skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1804548

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We study the pairwise interactions of drops in an applied uniform DC electric field within the framework of the leaky dielectric model. We develop three-dimensional numerical simulations using the boundary integral method and an analytical theory assuming small drop deformations. We apply the simulations and the theory to explore the electrohydrodynamic interactions between two identical drops with arbitrary orientation of their line of centres relative to the applied field direction. Our results show a complex dynamics depending on the conductivities and permittivities of the drops and suspending fluids, and the initial drop pair alignment with the applied electric field. 
    more » « less
  2. null (Ed.)