Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Significance Ice-nucleating particles significantly alter cloud properties and lifetime, causing large but poorly constrained climate impacts. Biomass-burning aerosol emitted by wildfires is a major and growing source of atmospheric pollution. Prior work suggested that ice-nucleating particles can sometimes be emitted by biomass combustion, but the production and characteristics of these particles are poorly understood. Here we show that mineral phases are a significant ice-active component of both biomass-burning aerosol and ash particles. These mineral phases are derived from plant inorganic material that decomposes and reforms as ice-active minerals during combustion; they form more commonly from tall grass versus wood fuels. Aerosolized mineral and ash are now understood as a major source of the ice-nucleating particles in biomass-burning smoke.more » « less
- 
            Abstract Prediction of ice formation in clouds presents one of the grand challenges in the atmospheric sciences. Immersion freezing initiated by ice-nucleating particles (INPs) is the dominant pathway of primary ice crystal formation in mixed-phase clouds, where supercooled water droplets and ice crystals coexist, with important implications for the hydrological cycle and climate. However, derivation of INP number concentrations from an ambient aerosol population in cloud-resolving and climate models remains highly uncertain. We conducted an aerosol–ice formation closure pilot study using a field-observational approach to evaluate the predictive capability of immersion freezing INPs. The closure study relies on collocated measurements of the ambient size-resolved and single-particle composition and INP number concentrations. The acquired particle data serve as input in several immersion freezing parameterizations, which are employed in cloud-resolving and climate models, for prediction of INP number concentrations. We discuss in detail one closure case study in which a front passed through the measurement site, resulting in a change of ambient particle and INP populations. We achieved closure in some circumstances within uncertainties, but we emphasize the need for freezing parameterization of potentially missing INP types and evaluation of the choice of parameterization to be employed. Overall, this closure pilot study aims to assess the level of parameter details and measurement strategies needed to achieve aerosol–ice formation closure. The closure approach is designed to accurately guide immersion freezing schemes in models, and ultimately identify the leading causes for climate model bias in INP predictions.more » « less
- 
            Ice-nucleating particles (INPs) in biomass-burning aerosol (BBA) that affect cloud glaciation, microphysics, precipitation, and radiative forcing were recently found to be driven by the production of mineral phases. BBA experiences extensive chemical aging as the smoke plume dilutes, and we explored how this alters the ice activity of the smoke using simulated atmospheric aging of authentic BBA in a chamber reactor. Unexpectedly, atmospheric aging enhanced the ice activity for most types of fuels and aging schemes. The removal of organic carbon particle coatings that conceal the mineral-based ice-active sites by evaporation or oxidation then dissolution can increase the ice activity by greater than an order of magnitude. This represents a different framework for the evolution of INPs from biomass burning where BBA becomes more ice active as it dilutes and ages, making a larger contribution to the INP budget, resulting cloud microphysics, and climate forcing than is currently considered.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
