skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1805847

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Copepods that catch prey using feeding currents beat their cephalic appendages to generate flow entrainment, and detect the presence of nearby prey through the mechanoreceptional setae on the antennules and other appendages. It remains unclear whether the feeding current can be used by the copepod to gain information about its surroundings by sensing when the current is disturbed by nearby particles. In this article, we present a numerical model to address how much the presence of free‐floating prey can alter the feeding current velocity field, and how these prey‐induced disturbances modify setal deformation patterns. We prescribe the beating strokes of the feeding appendages, and quantify the changes in the bending flows across the setae and setal deformations due to the prey entrainment. We find that, first, the seta bends more due to the time‐averaged velocity component of the feeding current, while filtering out the oscillatory component. Second, 100 μm diameter free‐floating prey do not induce any noticeable change in deformations of the proximal and distal setae unless they are less than 10 or 5.5 prey radii from the antennules, respectively. Larger prey cause bigger flow disturbances than small prey, which are expected to be even harder to detect. Last, if setae are responsive to changes in deformationrelativeto the deformations in the absence of prey, the distal seta may have long‐ranged sensitivity to assist in detection of prey near the proximal seta, but if setae are responsive toabsolutechanges in deformation, both setae have very short‐ranged sensitivity. 
    more » « less
  2. The feeding performance of zooplankton influences their evolution and can explain their behaviour. A commonly used metric for feeding performance is the volume of fluid that flows through a filtering surface and is scanned for food. Here, we show that such a metric may give incorrect results for organisms that produce recirculatory flows, so that fluid flowing through the filter may have been already filtered of food. In a numerical model, we construct a feeding metric that correctly accounts for recirculation in a sessile model organism inspired by our experimental observations ofVorticellaand its flow field. Our metric tracks the history of current-borne particles to determine if they have already been filtered by the filtering surface. Examining the pathlines of food particles reveals that the capture of fresh particles preferentially involves the tips of cilia, which we corroborate in observations of feedingVorticella. We compare the amount of fresh nutrient particles carried to the organism with other metrics of feeding, and show that metrics that do not take into account the history of particles cannot correctly compute the volume of freshly scanned fluid. 
    more » « less
  3. Nano/microrobotic swimmers have many possible biomedical applications such as drug delivery and micro-manipulation. This paper examines one of the most promising classes of these: rigid magnetic microrobots that are propelled through bulk fluid by rotation induced by a rotating magnetic field. Propulsion corresponds to steadily rotating and translating solutions of the dynamics of such microrobots that co-rotate with the magnetic field. To be observed in experiments and be amenable to steering control, such solutions must also be stable to perturbations. In this paper, we analytically derive a criterion for the stability of such steadily rotating solutions for a microrobot made of soft magnetic materials, which have a magnetization that depends on the applied field. This result generalizes previous stability criteria we obtained for microrobots with a permanent magnetization. 
    more » « less