skip to main content


Search for: All records

Award ID contains: 1806202

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Snowdrifts formed by wind transported snow deposition represent a vital component of the earth surface processes on Arctic tundra. Snow accumulation on steep slopes particularly at the margins of rivers, coasts, lakes, and drained lake basins (DLBs) comprise a significant water storage component for the ecosystem during spring and summer snowmelt. The tundra landscape is in constant change as lakes drain, substantially altering the surface morphology that partially controls how snow drifts and accumulates throughout the cold seasons. Here, we combine field measurements, remote sensing observations, and snow modeling to investigate how lake drainage affects snow redistribution at Inigok on the Arctic Coastal Plain of Alaska, where the snow movement is controlled by wind. Field observations included measurements of snow depth using ground penetrating radar and probe. We mapped mid‐July snow cover and modeled snow redistribution before and after drainage simulation for 33 lakes (∼30 km2) in our study area (∼140 km2). Our results show the advantage of using a wide range of snow depth measurements on frozen lakes, DLBs, and upland to validate the snow modeling in order to capture the variability inherent in the landscape. The lake drainage simulation suggests an increase in snow storage of up to ∼24% at DLBs compared to extant lakes, ∼35% considering only snowdrifts (assumed as ≥1 m depth), and ∼4% considering the whole study area. This increase in snow accumulation could significantly impact the landscape when it melts, including wildlife, vegetation, biogeochemical processes, and potential natural hazards like snow‐dam outburst floods.

     
    more » « less
  2. Abstract

    Lakes and drained lake basins (DLBs) together cover up to ∼80% of the western Arctic Coastal Plain of Alaska. The formation and drainage of lakes in this continuous permafrost region drive spatial and temporal landscape dynamics. Postdrainage processes including vegetation succession and permafrost aggradation have implications for hydrology, carbon cycling, and landscape evolution. Here, we used surface nuclear magnetic resonance (NMR) and transient electromagnetic (TEM) measurements in conjunction with thermal modeling to investigate permafrost aggradation beneath eight DLBs on the western Arctic Coastal Plain of Alaska. We also surveyed two primary surface sites that served as nonlake affected control sites. Approximate timing of lake drainage was estimated based on historical aerial imagery. We interpreted the presence of taliks based on either unfrozen water estimated with surface NMR and/or TEM resistivities in DLBs compared to measurements on primary surface sites and borehole resistivity logs. Our results show evidence of taliks below several DLBs that drained before and after 1949 (oldest imagery). We observed depths to the top of taliks between 9 and 45 m. Thermal modeling and geophysical observations agree about the presence and extent of taliks at sites that drained after 1949. Lake drainage events will likely become more frequent in the future due to climate change and our modeling results suggest that warmer and wetter conditions will limit permafrost aggradation in DLBs. Our observations provide useful information to predict future evolution of permafrost in DLBs and its implications for the water and carbon cycles in the Arctic.

     
    more » « less
  3. Abstract. Thermokarst lake dynamics, which play an essential role in carbon releasedue to permafrost thaw, are affected by various geomorphological processes.In this study, we derive a three-dimensional (3D) Stefan equation tocharacterize talik geometry under a hypothetical thermokarst lake in thecontinuous permafrost region. Using the Euler equation in the calculus ofvariations, the lower bounds of the talik were determined as an extremum ofthe functional describing the phase boundary area with a fixed total talikvolume. We demonstrate that the semi-ellipsoid geometry of the talik isoptimal for minimizing the total permafrost thaw under the lake for a givenannual heat supply. The model predicting ellipsoidal talik geometry wascompared to talik thickness observations using transient electromagnetic(TEM) soundings in Peatball Lake on the Arctic Coastal Plain (ACP) ofnorthern Alaska. The depth : width ratio of the elliptical sub-lake talik cancharacterize the energy flux anisotropy in the permafrost, although the lakebathymetry cross section may not be elliptic due to the presence ofnear-surface ice-rich permafrost. This theory suggests that talikdevelopment deepens lakes and results in more uniform horizontal lakeexpansion around the perimeter of the lakes, while wind-induced waves andcurrents are likely responsible for the elongation and orientation ofshallow thermokarst lakes without taliks in certain regions such as the ACPof northern Alaska. 
    more » « less