skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1806522

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the interplay of stellar feedback and turbulence in the interstellar medium (ISM) is essential to modeling the evolution of galaxies. To determine the timescales over which stellar feedback drives turbulence in the ISM, we performed a spatially resolved, multiwavelength study of the nearby star-forming dwarf galaxy UGC 4305. As indicators of turbulence on local scales (400 pc), we utilized ionized gas velocity dispersion derived from IFU Hαobservations and atomic gas velocity dispersion and energy surface densities derived from Hisynthesis observations with the Very Large Array. These indicators of turbulence were tested against star formation histories over the past 560 Myr derived from color–magnitude diagrams using Spearman’s rank correlation coefficient. The strongest correlation identified at the 400 pc scale is between measures of Hiturbulence and star formation 70–140 Myr ago. We repeated our analysis of UGC 4305's current turbulence and past star formation activity on multiple physical scales (∼560 and 800 pc) to determine whether there are indications of changes in the correlation timescale with changes to the physical scale. No notable correlations were found at larger physical scales, emphasizing the importance of analyzing star formation-driven turbulence as a local phenomenon. 
    more » « less
  2. Abstract Stellar feedback is fundamental to the modeling of galaxy evolution, as it drives turbulence and outflows in galaxies. Understanding the timescales involved are critical for constraining the impact of stellar feedback on the interstellar medium. We analyzed the resolved star formation histories along with the spatial distribution and kinematics of the atomic and ionized gas of four nearby star-forming dwarf galaxies (NGC 4068, NGC 4163, NGC 6789, and UGC 9128) to determine the timescales over which stellar feedback drives turbulence. The four galaxies are within 5 Mpc and have a range of properties including current star formation rates of 0.0005–0.01Myr−1, log(M*/M) between 7.2 and 8.2, and log(MHi/M) between 7.2 and 8.3. Their color–magnitude diagram derived star formation histories over the past 500 Myr were compared to their atomic and ionized gas velocity dispersion and Hienergy surface densities as indicators of turbulence. The Spearman’s rank correlation coefficient was used to identify any correlations between their current turbulence and their past star formation activity on local scales (∼400 pc). The strongest correlation found was between the Hiturbulence measures and the star formation rate 100–200 Myr ago. This suggests a coupling between the star formation activity and atomic gas on this timescale. No strong correlation between the ionized gas velocity dispersion and the star formation activity between 5 and 500 Myr ago was found. The sample and analysis are the foundation of a larger program aimed at understanding the timescales over which stellar feedback drives turbulence. 
    more » « less
  3. null (Ed.)