skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1806583

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using an atom interferometer to measure the quotient of the reduced Planck's constant and the mass of a cesium‐133 atom , the most accurate measurement of the fine structure constant is recorded, at an accuracy of 0.20 parts per billion (ppb). Using multiphoton interactions (Bragg diffraction and Bloch oscillations), the largest phase (12 million radians) of any Ramsey–Bordé interferometer and controlled systematic effects at a level of 0.12 ppb are demonstrated. Comparing the Penning trap measurements with the Standard Model prediction of the electron gyromagnetic anomaly based on the α measurement, a 2.5 tension is observed, rejecting dark photons as the reason for the unexplained part of the muon's gyromagnetic moment discrepancy at a 99% confidence level according to frequentist statistics. Implications for dark‐sector candidates (e.g., scalar and pseudoscalar bosons, vector bosons, and axial‐vector bosons) may be a sign of physics beyond the Standard Model. A future upgrade of the cesium fountain atom interferometer is also proposed to increase the accuracy of by 1 to 2 orders of magnitude, which would help resolve the tension. 
    more » « less
  2. null (Ed.)