skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1806871

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We examined the basic conservation laws for diffeomorphism symmetry in the context of spontaneous diffeomorphism and local Lorentz-symmetry breaking. The conservation laws were used as constraints on a generic series of terms in an expansion around a flat background. We found all such terms for a two-tensor coupling to cubic order in the metric and tensor field fluctuations. The results are presented in a form that can be used for phenomenological calculations. One key result is that if we preserve the underlying diffeomorphism symmetry in a spontaneous-symmetry breaking scenario, one cannot decouple the two-tensor fluctuations from the metric fluctuations at the level of the action, except in special cases of the quadratic actions. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. We consider a model of noncommutative gravity that is based on a spacetime with broken local SO(2,3) ☆ symmetry. We show that the torsion-free version of this model is contained within the framework of the Lorentz-violating Standard-Model Extension (SME). We analyze in detail the relation between the torsion-free, quadratic limits of the broken SO(2,3) ☆ model and the Standard-Model Extension. As part of the analysis, we construct the relevant geometric quantities to quadratic order in the metric perturbation around a flat background. 
    more » « less