skip to main content

Search for: All records

Award ID contains: 1807127

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Homochiral helical self‐organizations provide some of the most fundamental architectures of biological macromolecules and of their co‐assemblies although they were first discovered and elucidated only during the early 1950. Helical synthetic covalent macromolecules started to be discovered soon after and were followed by supramolecular macromolecules and their co‐assemblies few decades later. This perspective will provide a brief historical development of chiral helical self‐organizations in biology and in supramolecular chemistry. Helical covalent and supramolecular macromolecules self‐organize and co‐organize helical supramolecular columns and spherical helices that can generate complex liquid crystals, crystals including Frank‐Kasper phases, and quasicrystals. The design of new functions based on synthetic helical assemblies will also be discussed. Personal events from the life of scientists contributing to these developments are also briefly mentioned.

    more » « less
  2. Abstract

    The effect of the two‐dimensional glycan display on glycan‐lectin recognition remains poorly understood despite the importance of these interactions in a plethora of cellular processes, in (patho)physiology, as well as its potential for advanced therapeutics. Faced with this challenge we utilized glycodendrimersomes, a type of synthetic vesicles whose membrane mimics the surface of a cell and offers a means to probe the carbohydrate biological activity. These single‐component vesicles were formed by the self‐assembly of sequence‐defined mannose‐Janus dendrimers, which serve as surrogates for glycolipids. Using atomic force microscopy and molecular modeling we demonstrated that even mannose, a monosaccharide, was capable of organizing the sugar moieties into periodic nanoarrays without the need of the formation of liquid‐ordered phases as assumed necessary for rafts. Kinetics studies of Concanavalin A binding revealed that those nanoarrays resulted in a new effective ligand yielding a ten‐fold increase in the kinetic and thermodynamic constant of association.

    more » « less
  3. null (Ed.)