skip to main content


Search for: All records

Award ID contains: 1807382

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Antibody-based therapeutics continue to expand both in the number of products and in their use in patients. These heterogeneous proteins challenge traditional drug characterization strategies, but ion mobility (IM) and mass spectrometry (MS) approaches have eased the challenge of higher-order structural characterization. Energy-dependent IM-MS, e.g., collision-induced unfolding (CIU), has been demonstrated to be sensitive to subtle differences in structure. In this study, we combine a charge-reduction method, cation-to-anion proton-transfer reactions (CAPTR), with energy-dependent IM-MS and varied solution conditions to probe their combined effects on the gas-phase structures of IgG1κ and IgG4κ from human myeloma. CAPTR paired with MS-only analysis improves the confidence of charge-state assignments and the resolution of the interfering protein species. Collision cross-section distributions were determined for each of the charge-reduced products. Similarity scoring was used to quantitatively compare distributions determined from matched experiments analyzing samples of the two antibodies. Relative to workflows using energy-dependent IM-MS without charge-state manipulation, combining CAPTR and energy-dependent IM-MS enhanced the differentiation of these antibodies. Combined, these results indicate that CAPTR can benefit many aspects of antibody characterization and differentiation. 
    more » « less
    Free, publicly-accessible full text available December 26, 2024
  2. The ability of nanoelectrospray ionization (nanoESI) to generate a continuous flow of charged droplets relies on the electrolytic nature of the process. This electrochemistry can lead to the accumulation of redox products in the sample solution. This consequence can have significant implications for native mass spectrometry (MS), which aims to probe the structures and interactions of biomolecules in solution. Here, ratiometric fluorescence imaging and a pH-sensitive, fluorescent probe are used to quantify changes in solution pH during nanoESI under conditions relevant to native MS. Results show that the extent and rate of change in sample pH depends on several experimental parameters. There is a strong correlation between the extent and rate of change in solution pH and the magnitude of both the nanoESI current and electrolyte concentration. Smaller changes in solution pH are observed during experiments when a negative potential is applied than for those when a positive potential is applied. Finally, we make specific recommendations for designing native MS experiments that control for these effects. 
    more » « less
    Free, publicly-accessible full text available August 2, 2024
  3. The structural stability of biomolecules in the gas phase remains an important topic in mass spectrometry applications for structural biology. Here, we evaluate the kinetic stability of native-like protein ions using time-dependent, tandem ion mobility (IM). In these tandem IM experiments, ions of interest are mobility-selected after a first dimension of IM and trapped for up to ∼14 s. Time-dependent, collision cross section distributions are then determined from separations in a second dimension of IM. In these experiments, monomeric protein ions exhibited structural changes specific to both protein and charge state, whereas large protein complexes did not undergo resolvable structural changes on the timescales of these experiments. We also performed energy-dependent experiments, i.e., collision-induced unfolding, as a comparison for time-dependent experiments to understand the extent of unfolding. Collision cross section values observed in energy-dependent experiments using high collision energies were significantly larger than those observed in time-dependent experiments, indicating that the structures observed in time-dependent experiments remain kinetically trapped and retain some memory of their solution-phase structure. Although structural evolution should be considered for highly charged, monomeric protein ions, these experiments demonstrate that higher-mass protein ions can have remarkable kinetic stability in the gas phase. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)