Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The performance of surface‐enhanced Raman spectroscopy (SERS) is determined by the interaction between highly diluted analytes and boosted localized electromagnetic fields in nanovolumes. Although superhydrophobic surfaces are developed for analyte enrichment, i.e., to concentrate and transfer analytes toward a specific position, it is still challenging to realize reproducible, uniform, and sensitive superhydrophobic SERS substrates over large scales, representing a major barrier for practical sensing applications. To overcome this challenge, a superhydrophobic SERS chip that combines 3D‐assembled gold nanoparticles on nanoporous substrates is proposed, for a strong localized field, with superhydrophobic surface treatment for analyte enrichment. Intriguingly, by concentrating droplets in the volume of 40 µL, the sensitivity of 1 nmis demonstrated using 1,2‐bis(4‐pyridyl)‐ethylene molecules. In addition, this unique chip demonstrates a relative standard deviation (RSD) of 2.2% in chip‐to‐chip reproducibility for detection of fentanyl at 1 µg mL–1concentration, revealing its potential for quantitative sensing of chemicals and drugs. Furthermore, the trace analysis of fentanyl and fentanyl‐heroin mixture in human saliva is realized after a simple pretreatment process. This superhydrophobic chip paves the way toward on‐site and real‐time drug sensing to tackle many societal issues like drug abuse and the opioid crisis.more » « less
-
Abstract Metallic nanostructures with nanogap features can confine electromagnetic fields into extremely small volumes. In particular, as the gap size is scaled down to sub‐nanometer regime, the quantum effects for localized field enhancement reveal the ultimate capability for light–matter interaction. Although the enhancement factor approaching the quantum upper limit has been reported, the grand challenge for surface‐enhanced vibrational spectroscopic sensing remains in the inherent randomness, preventing uniformly distributed localized fields over large areas. Herein, a strategy to fabricate high‐density random metallic nanopatterns with accurately controlled nanogaps, defined by atomic‐layer‐deposition and self‐assembled‐monolayer processes, is reported. As the gap size approaches the quantum regime of ≈0.78 nm, its potential for quantitative sensing, based on a record‐high uniformity with the relative standard deviation of 4.3% over a large area of 22 mm × 60 mm, is demonstrated. This superior feature paves the way towards more affordable and quantitative sensing using quantum‐limit‐approaching nanogap structures.more » « less
An official website of the United States government

Full Text Available