skip to main content


Search for: All records

Award ID contains: 1807740

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Reactive force elds provide an a ordable model for simulating chemical reactions at a fraction of the cost of quantum mechanical approaches. However classically accounting for chemical reactivity often comes at the expense of accuracy and transferability, while computational cost is still large relative to non-reactive force elds. In this Perspective we summarize recent e orts for improving the performance of reactive force elds in these three areas with a focus on the ReaxFF theoretical model. To improve accuracy we describe recent reformulations of charge equilibration schemes to overcome unphysical long-range charge transfer, new ReaxFF models that account for explicit electrons, and corrections for energy conservation issues of the ReaxFF model. To enhance transferability we also highlight new advances to include explicit treatment of electrons in the ReaxFF and hybrid non-reactive/reactive simulations that make it possible to model charge transfer, redox chemistry, and large systems such as reverse micelles within the framework of a reactive force eld. To address the computational cost we review recent work in extended Lagrangian schemes and matrix preconditioners for accelerating the charge equilibration method component of ReaxFF and improvements in its software performance in LAMMPs. 
    more » « less
  2. To tackle the time scales required to study complex chemical reactions, methods performing accelerated molecular dynamics are necessary even with the recent advancement in high-performance computing. A number of different acceleration techniques are available. Here we explore potential synergies between two popular acceleration methods – Parallel Replica Dynamics (PRD) and Collective Variable Hyperdynamics (CVHD), by analysing the speedup obtained for the pyrolysis of n-dodecane. We observe that PRD + CVHD provides additional speedup to CVHD by reaching the required time scales for the reaction at an earlier wall-clock time. Although some speedup is obtained with the additional replicas, we found that the effectiveness of the inclusion of PRD is depreciated for systems where there is a dramatic increase in reaction rates induced by CVHD. Similar observations were made in the simulation of ethylene-carbonate/Li system, which is inherently more reactive than pyrolysis, indicate that the speedup obtained via the combination of the two acceleration methods can be generalised to most practical chemical systems. 
    more » « less