skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1808031

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cell‐based therapies are gaining prominence in treating a wide variety of diseases and using synthetic polymers to manipulate these cells provides an opportunity to impart function that could not be achieved using solely genetic means. Herein, we describe the utility of functional block copolymers synthesized by ring‐opening metathesis polymerization (ROMP) that can insert directly into the cell membrane via the incorporation of long alkyl chains into a short polymer block leading to non‐covalent, hydrophobic interactions with the lipid bilayer. Furthermore, we demonstrate that these polymers can be imbued with advanced functionalities. A photosensitizer was incorporated into these polymers to enable spatially controlled cell death by the localized generation of1O2at the cell surface in response to red‐light irradiation. In a broader context, we believe our polymer insertion strategy could be used as a general methodology to impart functionality onto cell‐surfaces. 
    more » « less
  2. PEGylation is the gold standard in protein‐polymer conjugation, improving circulation half‐life of biologics while mitigating the immune response to a foreign substance. However, preexisting anti‐PEG antibodies in healthy humans are becoming increasingly prevalent and elicitation of anti‐PEG antibodies when patients are administered with PEGylated therapeutics challenges their safety profile. In the current study, two distinct amine‐reactive poly(oxanorbornene) (PONB) imide‐based water‐soluble block co‐polymers are synthesized using ring‐opening metathesis polymerization (ROMP). The synthesized block‐copolymers include PEG‐based PONB‐PEG and sulfobetaine‐based PONB‐Zwit. The polymers are then covalently conjugated to amine residues of lysozyme (Lyz) and urate oxidase (UO) using a grafting‐to bioconjugation technique. Both Lyz‐PONB and UO‐PONB conjugates retained significant bioactivities after bioconjugation. Immune recognition studies of UO‐PONB conjugates indicated a comparable lowering of protein immunogenicity when compared to PEGylated UO. PEG‐specific immune recognition is negligible for UO‐PONB‐Zwit conjugates, as expected. These polymers provide a new alternative for PEG‐based systems that retain high levels of activity for the biologic while showing improved immune recognition profiles. 
    more » « less
  3. Ring opening metathesis polymerization (ROMP) is widely considered an excellent living polymerization technique that proceeds rapidly under ambient conditions and is highly functional group tolerant when performed in organic solvents. However, achieving the same level of success in aqueous media has proved to be challenging, often requiring an organic co-solvent or a very low pH to obtain fast initiation and high monomer conversion. The ability to efficiently conduct ROMP under neutral pH aqueous conditions would mark an important step towards utilizing aqueous ROMP with acid-sensitive functional groups or within a biological setting. Herein we describe our efforts to optimize ROMP in an aqueous environment under neutral pH conditions. Specifically, we found that the presence of excess chloride in solution as well as relatively small changes in pH near physiological conditions have a profound effect on molecular weight control, polymerization rate and overall monomer conversion. Additionally, we have applied our optimized conditions to polymerize a broad scope of water-soluble monomers and used this methodology to produce nanostructures via ring opening metathesis polymerization induced self-assembly (ROMPISA) under neutral pH aqueous conditions. 
    more » « less