skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1808483

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Direct layer-by-layer (LbL) assembly of cationic, small-molecule antibacterial bioactives with water-soluble, ionic polyphosphazenes (PPzs) containing trifluoroethoxy and carboxy substitients is reported. First, influence of PPzs hydrophobicity and antibiotic charge density on LbL assembly was studied via evolution of dry film thickness. We found that the use of fluorinated PPz polyelectrolytes enhanced ionic pairing within LbL coatings, and that increasing charge density of small molecules increased antibiotic uptake. This strategy was successful even in the case of gentamicin, a hydrophilic, small antibiotic with only 3 to 4 positive charges at pH 7.5. Confirmation of antibiotic presence in films was demonstrated via x-ray photoelectron spectroscopy. Importantly, LbL films of fluorinated PPz polyelectrolytes retained antibiotics in physiological conditions due to the enhanced hydrophobic interactions. In contrast, LbL films of non-fluorinated PPzs released antibiotics at low pH and in the presence of salt following the charge renormalization argument. The potential of these coatings with a biomedically relevant bacterial strain, Staphylococcus aureus, is discussed. 
    more » « less