Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Contemporary theory that emphasizes the roles of oxytocin and vasopressin in mammalian sociality has been shaped by seminal vole research that revealed interspecific variation in neuroendocrine circuitry by mating system. However, substantial challenges exist in interpreting and translating these rodent findings to other mammalian groups, including humans, making research on nonhuman primates crucial. Both monogamous and non-monogamous species exist withinEulemur, a genus of strepsirrhine primate, offering a rare opportunity to broaden a comparative perspective on oxytocin and vasopressin neurocircuitry with increased evolutionary relevance to humans. We performed oxytocin and arginine vasopressin 1a receptor autoradiography on 12Eulemurbrains from seven closely related species to (1) characterize receptor distributions across the genus, and (2) examine differences between monogamous and non-monogamous species in regions part of putative “pair-bonding circuits”. We find some binding patterns acrossEulemurreminiscent of olfactory-guided rodents, but others congruent with more visually oriented anthropoids, consistent with lemurs occupying an ‘intermediary’ evolutionary niche between haplorhine primates and other mammalian groups. We find little evidence of a “pair-bonding circuit” inEulemurakin to those proposed in previous rodent or primate research. Mapping neuropeptide receptors in these nontraditional species questions existing assumptions and informs proposed evolutionary explanations about the biological bases of monogamy.more » « less
-
Abstract Host-associated microbiomes shape and are shaped by myriad processes that ultimately delineate their symbiotic functions. Whereas a host's stable traits, such as its lineage, relate to gross aspects of its microbiome structure, transient factors, such as its varying physiological state, relate to shorter-term, structural variation. Our understanding of these relationships in primates derives principally from anthropoid studies and would benefit from a broader, comparative perspective. We thus examined the vaginal, labial, and axillary microbiota of captive, female ring-tailed lemurs (Lemur catta) and Coquerel's sifakas (Propithecus coquereli), across an ovarian cycle, to better understand their relation to stable (e.g. species identity/mating system, body site) and transient (e.g. ovarian hormone concentration, forest access) host features. We used 16S amplicon sequencing to determine microbial composition and enzyme-linked immunosorbent assays to measure serum hormone concentrations. We found marked variation in microbiota diversity and community composition between lemur species and their body sites. Across both host species, microbial diversity was significantly correlated with ovarian hormone concentrations; negatively with progesterone and positively with estradiol. The hosts’ differential forest access related to the diversity of environmental microbes, particularly in axillary microbiomes. Such transient endogenous and exogenous modulators have potential implications for host reproductive health and behavioral ecology.more » « less
An official website of the United States government
