skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1809127

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetic single atoms and molecules are receiving intensifying research focus because of their potential as the smallest possible memory, spintronic, and qubit elements. Scanning probe microscopes used to study these systems have benefited greatly from new techniques that use molecule-functionalized tips to enhance spatial and spectroscopic resolutions and enable new sensing capabilities. We demonstrate a microscopy technique that uses a magnetic molecule, Ni(cyclopentadienyl) 2 , adsorbed at the apex of a scanning probe tip, to sense exchange interactions with another molecule adsorbed on a Ag(110) surface in a continuously tunable fashion in all three spatial directions. We further used the probe to image contours of exchange interaction strength, revealing angstrom-scale regions where the quantum states of two magnetic molecules strongly mix. Our results pave the way for new nanoscale imaging capabilities based on magnetic single-molecule sensors. 
    more » « less