skip to main content


Search for: All records

Award ID contains: 1809453

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A versatile one‐step synthesis of surface‐attached polymer networks using small bifunctional gelators (SBG), namely 4‐azidosulfonylphenethyltrimethoxysilane (4‐ASPTMS) and 6‐azidosulfonylhexyltriethoxysilane (6‐ASHTES) is reported. A thin layer (≈200 nm) of a mixture comprising ≈90% precursor polymer and 10% of 4‐ASPTMS or 10% 6‐ASHTES on a silicon wafer is deposited. Upon UV irradiation (≈l–254 nm) or annealing (>100 °C) layers, sulfonyl azides (SAz) release nitrogen by forming singlet and triplet nitrenes that concurrently react with any C─H bond in the vicinity resulting in sulfonamide crosslinks. Condensation among tri‐alkoxy groups (i.e., methoxy or ethoxy) in bulk connects the SBG units, which completes the crosslinking. Concurrently, when such functionalities react with hydroxyl groups at the surface, which enable the covalent attachment of the crosslinked polymer chains. A systematic investigation on reaction mechanism and gel formation using spectroscopic ellipsometry (SE) and Fourier‐transform infrared spectroscopy in the attenuated total reflection mode (FTIR‐ATR) is performed. Analogous thermally initiated gelation for both 4‐ASPTMS and 6‐ASHTES is found. The 6‐ASHTES is UV inactive at ≈l–254 nm, while the 4‐ASPTMS is active and forms gels. The difference is attributed to the aromatic nature of 4‐ASPTMS that absorb UV light at ≈l–254 nm due to π–π*transition.

     
    more » « less
  2. Abstract

    This study presents a comprehensive survey of microgel‐coated materials and their functional behavior, describing the complex interplay between the physicochemical and mechanical properties of the microgels and the chemical and morphological features of substrates. The cited literature is articulated in four main sections: i) properties of 2D and 3D substrates, ii) synthesis, modification, and characterization of the microgels, iii) deposition techniques and surface patterning, and iv) application of microgel‐coated surfaces focusing on separations, sensing, and biomedical applications. Each section discusses – by way of principles and examples – how the various design parameters work in concert to deliver functionality to the composite systems. The case studies presented herein are viewed through a multi‐scale lens. At the molecular level, the surface chemistry and the monomer make‐up of the microgels endow responsiveness to environmental and artificial physical and chemical cues. At the micro‐scale, the response effects shifts in size, mechanical, and optical properties, and affinity towards species in the surrounding liquid medium, ranging from small molecules to cells. These phenomena culminate at the macro‐scale in measurable, reversible, and reproducible effects, aiming in a myriad of directions, from lab‐scale to industrial applications.

     
    more » « less
  3. We present a versatile one-pot synthesis method for creating surface-anchored orthogonal gradient networks using a small bi-functional gelator, 4-azidosulfonylphenethyltrimethoxysilane (4-ASPTMS). The sulfonyl azide (SAz) group of 4-ASPTMS is UV (≤254 nm) and thermally active (≥100 °C) and, thus, enables us to vary the cross-link density in orthogonal directions by controlling the activation of SAz groups via UV and temperature means. We deposit a thin layer (∼200 nm) of a mixture comprising ∼90% precursor polymer and ∼10% 4-ASPTMS in a silicon wafer. Upon UV irradiation or annealing the layers, SAz releases nitrogen by forming singlet and triplet nitrenes that concurrently react with any C–H bond in the vicinity leading to sulfonamide cross-links. Condensation among trimethoxy groups in the bulk connects 4-ASPTMS units and completes the cross-linking. Simultaneously, 4-ASPTMS near the substrate reacts with surface-bound –OH motifs that anchor the cross-linked polymer chains to the substrate. We demonstrate the generation of orthogonal gradient network coatings exhibiting cross-link density (or stiffness) gradients in orthogonal directions using such a simple process. 
    more » « less
  4. null (Ed.)