skip to main content


Search for: All records

Award ID contains: 1810168

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Polyethylene glycol (PEG) is a polymer routinely used to modify biologics and nanoparticles to prolong blood circulation and reduce immunogenicity of the underlying therapeutic. However, several PEGylated therapeutics induce the development of anti-PEG antibodies (APA), leading to reduced efficacy and increased adverse events. Given the highly flexible structure of PEG, how APA specifically bind PEG remains poorly understood. Here, we report a crystal structure illustrating the structural properties and conformation of the APA 6-3 Fab bound to the backbone of PEG. The structure reveals an open ring-like sub-structure in the Fab paratope, whereby PEG backbone is captured and then stabilized via Van der Waals interactions along the interior and exterior of the ring paratope surface. Our finding illustrates a strategy by which antibodies can bind highly flexible repeated structures that lack fixed conformations, such as polymers. This also substantially advances our understanding of the humoral immune response generated against PEG.

     
    more » « less
  2. Nonhormonal products for on-demand contraception are a global health technology gap; this unmet need motivated us to pursue the use of sperm-binding monoclonal antibodies to enable effective on-demand contraception. Here, using the cGMP-compliant Nicotiana -expression system, we produced an ultrapotent sperm-binding IgG antibody possessing 6 Fab arms per molecule that bind a well-established contraceptive antigen target, CD52g. We term this hexavalent antibody “Fab-IgG-Fab” (FIF). The Nicotiana -produced FIF had at least 10-fold greater sperm-agglutination potency and kinetics than the parent IgG, while preserving Fc-mediated trapping of individual spermatozoa in mucus. We formulated the Nicotiana -produced FIF into a polyvinyl alcohol–based water-soluble contraceptive film and evaluated its potency in reducing progressively motile sperm in the sheep vagina. Two minutes after vaginal instillation of human semen, no progressively motile sperm were recovered from the vaginas of sheep receiving FIF Film. Our work supports the potential of multivalent contraceptive antibodies to provide safe, effective, on-demand nonhormonal contraception. 
    more » « less
  3. Many women risk unintended pregnancy because of medical contraindications or dissatisfaction with contraceptive methods, including real and perceived side effects associated with the use of exogenous hormones. We pursued direct vaginal delivery of sperm-binding monoclonal antibodies (mAbs) that can limit progressive sperm motility in the female reproductive tract as a strategy for effective nonhormonal contraception. Here, motivated by the greater agglutination potencies of polyvalent immunoglobulins but the bioprocessing ease and stability of immunoglobulin G (IgG), we engineered a panel of sperm-binding IgGs with 6 to 10 antigen-binding fragments (Fabs), isolated from a healthy immune-infertile woman against a unique surface antigen universally present on human sperm. These highly multivalent IgGs (HM-IgGs) were at least 10- to 16-fold more potent and faster at agglutinating sperm than the parent IgG while preserving the crystallizable fragment (Fc) of IgG that mediates trapping of individual spermatozoa in mucus. The increased potencies translated into effective (>99.9%) reduction of progressively motile sperm in the sheep vagina using as little as 33 μg of the 10-Fab HM-IgG. HM-IgGs were produced at comparable yields and had identical thermal stability to the parent IgG, with greater homogeneity. HM-IgGs represent not only promising biologics for nonhormonal contraception but also a promising platform for engineering potent multivalent mAbs for other biomedical applications.

     
    more » « less
  4. null (Ed.)
    In addition to the classical immunological functions such as neutralization, antibody-dependent cellular cytotoxicity, and complement activation, IgG antibodies possess a little-recognized and under-utilized effector function at mucosal surfaces: trapping pathogens in mucus. IgG can potently immobilize pathogens that otherwise readily diffuse or actively swim through mucus by forming multiple low-affinity bonds between the array of pathogen-bound antibodies and the mucin mesh. Trapping in mucus can exclude pathogens from contacting target cells, and facilitate their rapid elimination by natural mucus clearance mechanisms. Despite the fact that most infections are transmitted at mucosal surfaces, this muco-trapping effector function has only been revealed within the past decade, with the evidence to date suggesting that it is a universal effector function of IgG-Fc capable of immobilizing both viral and highly motile bacterial pathogens in all major mucosal secretions. This review provides an overview of the current evidence for Fc-mucin crosslinking as an effector function for antibodies in mucus, the mechanism by which the accumulation of weak Fc-mucin bonds by IgG bound to the surface of a pathogen can result in immobilization of antibody-pathogen complexes, and how trapping in mucus can contribute to protection against foreign pathogens. 
    more » « less
  5. null (Ed.)