skip to main content


Search for: All records

Award ID contains: 1810431

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microstructure refinement and optimized alloying can improve metallic alloy performance: stable nanocrystalline (NC) alloys with immiscible second phases, e.g., Cu-Ta, are stronger than unstable NC alloys and their coarse-grained (CG) counterparts, but higher melting point matrices are needed. Hypoeutectic, CG Ni-Y-Zr alloys were produced via arc-melting to explore their potential as high-performance materials. Microstructures were studied to determine phases present, local composition and length scales, while heat treatments allowed investigating microstructural stability. Alloys had a stable, hierarchical microstructure with ~250 nm ultrafine eutectic, ~10 µm dendritic arm spacing and ~1 mm grain size. Hardness and uniaxial compression tests revealed that mechanical properties of Ni-0.5Y-1.8Zr (in wt%) were comparable to Inconel 617 despite the small alloying additions, due to its hierarchical microstructure. Uniaxial compression at 600 °C showed that ternary alloys outperformed Ni-Zr and Ni-Y binary alloys in flow stress and hardening rates, which indicates that the Ni17Y2 phase was an effective reinforcement for the eutectic, which supplemented the matrix hardening due to increased solubility of Zr. Results suggest that ternary Ni-Y-Zr alloys hold significant promise for high temperature applications. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025