skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1811059

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We show that the mean curvature flow of generic closed surfaces in$$\mathbb{R}^{3}$$ R 3 avoids asymptotically conical and non-spherical compact singularities. We also show that the mean curvature flow of generic closed low-entropy hypersurfaces in$$\mathbb{R}^{4}$$ R 4 is smooth until it disappears in a round point. The main technical ingredient is a long-time existence and uniqueness result for ancient mean curvature flows that lie on one side of asymptotically conical or compact shrinking solitons. 
    more » « less
  2. null (Ed.)
    Abstract We extend the Lyapunov–Schmidt analysis of outlying stable constant mean curvature spheres in the work of S. Brendle and the second-named author [S. Brendle and M. Eichmair,Isoperimetric and Weingarten surfaces in the Schwarzschild manifold,J. Differential Geom. 94 2013, 3, 387–407] to the “far-off-center” regime and to include general Schwarzschild asymptotics. We obtain sharp existence and non-existence results for large stable constant mean curvature spheres that depend delicately on the behavior of scalar curvature at infinity. 
    more » « less
  3. The Allen–Cahn equation is a semilinear PDE which is deeply linked to the theory of minimal hypersurfaces via a singular limit. We prove curvature estimates and strong sheet separation estimates for stable solutions (building on recent work of Wang–Wei) of the Allen-Cahn equation on a 3-manifold. Using these, we are able to show that for generic metrics on a 3-manifold, minimal surfaces arising from Allen–Cahn solutions with bounded energy and bounded Morse index are two-sided and occur with multiplicity one and the expected Morse index. This confirms, in the Allen–Cahn setting, a strong form of the multiplicity one-conjecture and the index lower bound conjecture of Marques–Neves in 3-dimensions regarding min-max constructions of minimal surfaces. Allen–Cahn min-max constructions were recently carried out by Guaraco and Gaspar–Guaraco. Our resolution of the multiplicity-one and the index lower bound conjectures shows that these constructions can be applied to give a new proof of Yau's conjecture on infinitely many minimal surfaces in a 3-manifold with a generic metric (recently proven by Irie–Marques–Neves) with new geometric conclusions. Namely, we prove that a 3-manifold with a generic metric contains, for every p = 1, 2, 3,…, a two-sided embedded minimal surface with Morse index p and area ~ p13, as conjectured by Marques-Neves. 
    more » « less
  4. Abstract For $$3\leq n\leq 7$$, we prove that a bumpy closed Riemannian $$n$$-manifold contains a sequence of connected embedded closed minimal surfaces with unbounded area. 
    more » « less