- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0000000006000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Putman, Andrew (6)
-
Kassabov, Martin (1)
-
Margalit, Dan (1)
-
Miller, Jeremy (1)
-
Patzt, Peter (1)
-
Sam, Steven V (1)
-
Studenmund, Daniel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Putman, Andrew; Studenmund, Daniel (, Mathematische Zeitschrift)
-
Putman, Andrew (, L’Enseignement Mathématique)
-
Miller, Jeremy; Patzt, Peter; Putman, Andrew (, Geometry & Topology)null (Ed.)
-
Kassabov, Martin; Putman, Andrew (, Mathematische Annalen)null (Ed.)
-
Margalit, Dan; Putman, Andrew (, Proceedings of the Royal Society of Edinburgh: Section A Mathematics)Abstract We give a new proof of a theorem of D. Calegari that says that the Cayley graph of a surface group with respect to any generating set lying in finitely many mapping class group orbits has infinite diameter. This applies, for instance, to the generating set consisting of all simple closed curves.more » « less