skip to main content


Search for: All records

Award ID contains: 1811661

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Data from high-energy observations are usually obtained as lists of photon events. A common analysis task for such data is to identify whether diffuse emission exists, and to estimate its surface brightness, even in the presence of point sources that may be superposed. We have developed a novel nonparametric event list segmentation algorithm to divide up the field of view into distinct emission components. We use photon location data directly, without binning them into an image. We first construct a graph from the Voronoi tessellation of the observed photon locations and then grow segments using a new adaptation of seeded region growing that we callSeeded Region Growing on Graph, after which the overall method is namedSRGonG. Starting with a set of seed locations, this results in an oversegmented data set, whichSRGonGthen coalesces using a greedy algorithm where adjacent segments are merged to minimize a model comparison statistic; we use the Bayesian Information Criterion. UsingSRGonGwe are able to identify point-like and diffuse extended sources in the data with equal facility. We validateSRGonGusing simulations, demonstrating that it is capable of discerning irregularly shaped low-surface-brightness emission structures as well as point-like sources with strengths comparable to that seen in typical X-ray data. We demonstrateSRGonG’s use on the Chandra data of the Antennae galaxies and show that it segments the complex structures appropriately.

     
    more » « less
  2. Abstract

    The most dynamic electromagnetic coupling between the magnetosphere and ionosphere occurs in the polar upper atmosphere. It is critical to quantify the electromagnetic energy and momentum input associated with this coupling as its impacts on the ionosphere and thermosphere system are global and major, often leading to considerable disturbances in near‐Earth space environments. The current general circulation models of the upper atmosphere exhibit systematic biases that can be attributed to an inadequate representation of the Joule heating rate resulting from unaccounted stochastic fluctuations of electric fields associated with the magnetosphere‐ionosphere coupling. These biases exist regardless of geomagnetic activity levels. To overcome this limitation, a new multiresolution random field modeling approach is developed, and the efficacy of the approach is demonstrated using Super Dual Auroral Radar Network (SuperDARN) data carefully curated for the study during a largely quiet 4‐hour period on February 29, 2012. Regional small‐scale electrostatic fields sampled at different resolutions from a probabilistic distribution of electric field variability conditioned on actual SuperDARN LOS observations exhibit considerably more localized fine‐scale features in comparison to global large‐scale fields modeled using the SuperDARN Assimilative Mapping procedure. The overall hemispherically integrated Joule heating rate is increased by a factor of about 1.5 due to the effect of random regional small‐scale electric fields, which is close to the lower end of arbitrarily adjusted Joule heating multiplicative factor of 1.5 and 2.5 typically used in upper atmosphere general circulation models. The study represents an important step toward a data‐driven ensemble modeling of magnetosphere‐ionosphere‐atmosphere coupling processes.

     
    more » « less