skip to main content


Search for: All records

Award ID contains: 1812035

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Reduced limbs and limblessness have evolved independently in many lizard clades. Scincidae exhibit a wide range of limb‐reduced morphologies, but only some species have been used to study the embryology of limb reduction (e.g., digit reduction inChalcidesand limb reduction inScelotes). The genusBrachymeles, a Southeast Asian clade of skinks, includes species with a range of limb morphologies, from pentadactyl to functionally and structurally limbless species. Adults of the small, snake‐like speciesBrachymeles lukbanishow no sign of external limbs in the adult except for small depressions where they might be expected to occur. Here, we show that embryos ofBlukbaniin early stages of development, on the other hand, show a truncated but well‐developed limb with a stylopod and a zeugopod, but no signs of an autopod. As development proceeds, the limb's small size persists even while the embryo elongates. These observations are made based on external morphology. We used florescent whole‐mount immunofluorescence to visualize the morphology of skeletal elements and muscles within the embryonic limb ofBlukabni. Early stages have a humerus and separated ulna and radius cartilages; associated with these structures are dorsal and ventral muscle masses as those found in the embryos of other limbed species. While the limb remains small, the pectoral girdle grows in proportion to the rest of the body, with well‐developed skeletal elements and their associated muscles. In later stages of development, we find the small limb is still present under the skin, but there are few indications of its presence, save for the morphology of the scale covering it. By use of CT scanning, we find that the adult morphology consists of a well‐developed pectoral girdle, small humerus, extremely reduced ulna and radius, and well‐developed limb musculature connected to the pectoral girdle. These muscles form in association with a developing limb during embryonic stages, a hint that “limbless” lizards that possess these muscles may have or have had at least transient developing limbs, as we find inBlukbani. Overall, this newly observed pattern of ontogenetic reduction leads to an externally limbless adult in which a limb rudiment is hidden and covered under the trunk skin, a situation calledcryptomelia. The results of this work add to our growing understanding of clade‐specific patterns of limb reduction and the convergent evolution of limbless phenotypes through different developmental processes.

     
    more » « less
  2. Abstract

    Changes in behaviour may initiate shifts to new adaptive zones, with physical adaptations for novel environments evolving later. While new mutations are commonly considered engines of adaptive change, sensory evolution enabling access to new resources might also arise from standing genetic diversity, and even gene loss. We examine the relative contribution of molecular adaptations, measured by positive and relaxed selection, acting on eye‐expressed genes associated with shifts to new adaptive zones in ecologically diverse bats from the superfamily Noctilionoidea. Collectively, noctilionoids display remarkable ecological breadth, from highly divergent echolocation to flight strategies linked to specialized insectivory, the parallel evolution of diverse plant‐based diets (e.g., nectar, pollen and fruit) from ancestral insectivory, and—unusually for echolocating bats—often have large, well‐developed eyes. We report contrasting levels of positive selection in genes associated with the development, maintenance and scope of visual function, tracing back to the origins of noctilionoids and Phyllostomidae (the bat family with most dietary diversity), instead of during shifts to novel diets. Generalized plant visiting was not associated with exceptional molecular adaptation, and exploration of these novel niches took place in an ancestral phyllostomid genetic background. In contrast, evidence for positive selection in vision genes was found at subsequent shifts to either nectarivory or frugivory. Thus, neotropical noctilionoids that use visual cues for identifying food and roosts, as well as for orientation, were effectively preadapted, with subsequent molecular adaptations in nectar‐feeding lineages and the subfamily Stenodermatinae of fig‐eating bats fine‐tuning pre‐existing visual adaptations for specialized purposes.

     
    more » « less
  3. It has been recognized as early as the Victorian era that the apex of the distal phalanx has a distinct embryological development from the main shaft of the distal phalanx. Recent studies in regenerative medicine have placed an emphasis on the role of the apex of the distal phalanx in bone regrowth. Despite knowledge about the unique aspects of the distal phalanx, all phalanges are often treated as equivalent. Our morphological study reiterates and highlights the special anatomical and embryological properties of the apex of the distal phalanx, and names the apex “the bony cap” to distinguish it. We posit that the distal phalanx shaft is endochondral, while the bony cap is intramembranous and derived from the ectodermal wall. During development, the bony cap may be a separate structure that will fuse to the endochondral distal phalanx in the adult, as it ossifies well before the distal phalanges across taxa. Our study describes and revives the identity of the bony cap, and we identify it in three mammalian species: humans, cats, and horses ( Homo sapiens, Felis catus domestica , and Equus caballus ). During the embryonic period, we show the bony cap has a thimble-like shape that surrounds the proximal endochondral distal phalanx. The bony cap may thus play an inductive role in the differentiation of the corresponding nail, claw, or hoof (keratin structures) of the digit. When it is not present or develops erroneously, the corresponding keratin structures are affected, and regeneration is inhibited. By terming the bony cap, we hope to inspire more attention to its distinct identity and role in regeneration. 
    more » « less
  4. While evolvability of genes and traits may promote specialization during species diversification, how ecology subsequently restricts such variation remains unclear. Chemosensation requires animals to decipher a complex chemical background to locate fitness-related resources, and thus the underlying genomic architecture and morphology must cope with constant exposure to a changing odorant landscape; detecting adaptation amidst extensive chemosensory diversity is an open challenge. In phyllostomid bats, an ecologically diverse clade that evolved plant-visiting from an insectivorous ancestor, the evolution of novel food detection mechanisms is suggested to be a key innovation, as plant-visiting species rely strongly on olfaction, supplementarily using echolocation. If this is true, exceptional variation in underlying olfactory genes and phenotypes may have preceded dietary diversification. We compared olfactory receptor (OR) genes sequenced from olfactory epithelium transcriptomes and olfactory epithelium surface area of bats with differing diets. Surprisingly, although OR evolution rates were quite variable and generally high, they are largely independent of diet. Olfactory epithelial surface area, however, is relatively larger in plant-visiting bats and there is an inverse relationship between OR evolution rates and surface area. Relatively larger surface areas suggest greater reliance on olfactory detection and stronger constraint on maintaining an already diverse OR repertoire. Instead of the typical case in which specialization and elaboration are coupled with rapid diversification of associated genes, here the relevant genes are already evolving so quickly that increased reliance on smell has led to stabilizing selection, presumably to maintain the ability to consistently discriminate among specific odorants — a potential ecological constraint on sensory evolution. 
    more » « less
  5. A central objective in geology is to understand how biological metabolisms contribute to the cycling of redox-sensitive elements in extreme environments within the Earth's oceans and crust, and potentially how life may persist on water-rich exoplanets. In deep-sea hydrothermal vent systems, organisms cope with the presence of toxic chemical compounds (e.g., H2S) and microbial communities facilitate survival in these extreme geochemical conditions by oxidizing H2S for energy. However, it is essential to know how these animals interact with their microbiomes to immobilize, detoxify, and release elements back into the water, which enlightens how life can persist in extreme conditions and how biomass affects the availability of different chemical compounds. To investigate how large invertebrates cope with these extreme conditions and how this sequestration may affect biochemical cycling, we sampled several invertebrate species from the hydrothermal vents at 9°50'N East Pacific Rise. We used first used high resolution μCT-scanning to image the gut of several species of polychaete worms, crabs, and bivalves. Using diffusible iodine contrast-enhanced μCT-scanning, we could then visualize where minerals (if any) are distributed throughout the organism. Next, we used X-ray fluorescence microscopy to image the whole organism of each animal to characterize the elemental distribution throughout the tissue and also implemented pyrolysis gas-chromatography–mass spectrometry to further characterize the compounds. We discovered that sulfide mineralization in the guts of these animals is ubiquitous. Whether this is a byproduct of their surrounding geochemical environments or an adaptive strategy to assist in harnessing energy or trapping toxic metals remains to be determined. We also found that, in addition to widespread zinc and iron (which is highly correlated with sulfur), bromine tends to occur in high concentrations in some tissues as brominated phenolic compounds, particularly in specialized structures on polychaete worms, which may serve as a protective hardening and/or defensive agent. Because these animals process these toxic conditions in such unique ways, their role in the global cycling and bioavailability of elements such as copper, iron, zinc, and even halogens remain to be discovered. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Abstract Mammalian olfactory receptor genes (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoire diversity is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of specialized, less diverse OR repertoires has never been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed fruit bats (Carollia), which vary in their degree of specialization on the fruits of Piper plants. We characterized orthologous vs duplicated receptors among Carollia species, and explored the diversity and redundancy of the receptor gene repertoire. At the species level, the most dedicated Piper specialist, Carollia castanea, had lower OR diversity compared to the two generalists (C. sowelli and C. perspicillata), but we discovered a few unique sets of ORs within C. castanea with high redundancy of similar gene duplicates. These unique receptors potentially enable C. castanea to detect Piper fruit odorants better than its two congeners. Carollia perspicillata, the species with the most generalist diet, had a higher diversity of intact receptors, suggesting the ability to detect a wider range of odorant molecules. Variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication and changes in OR diversity may play a role in dietary adaptations and underlie ecological interactions between bats and plants. 
    more » « less
  8. Teeling, Emma (Ed.)
    Abstract Dietary adaptation is a major feature of phenotypic and ecological diversification, yet the genetic basis of dietary shifts is poorly understood. Among mammals, Neotropical leaf-nosed bats (family Phyllostomidae) show unmatched diversity in diet; from a putative insectivorous ancestor, phyllostomids have radiated to specialize on diverse food sources including blood, nectar, and fruit. To assess whether dietary diversification in this group was accompanied by molecular adaptations for changing metabolic demands, we sequenced 89 transcriptomes across 58 species and combined these with published data to compare ∼13,000 protein coding genes across 66 species. We tested for positive selection on focal lineages, including those inferred to have undergone dietary shifts. Unexpectedly, we found a broad signature of positive selection in the ancestral phyllostomid branch, spanning genes implicated in the metabolism of all major macronutrients, yet few positively selected genes at the inferred switch to plantivory. Branches corresponding to blood- and nectar-based diets showed selection in loci underpinning nitrogenous waste excretion and glycolysis, respectively. Intriguingly, patterns of selection in metabolism genes were mirrored by those in loci implicated in craniofacial remodeling, a trait previously linked to phyllostomid dietary specialization. Finally, we show that the null model of the widely-used branch-site test is likely to be misspecified, with the implication that the test is too conservative and probably under-reports true cases of positive selection. Our findings point to a complex picture of adaptive radiation, in which the evolution of new dietary specializations has been facilitated by early adaptations combined with the generation of new genetic variation. 
    more » « less