skip to main content


Search for: All records

Award ID contains: 1812280

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Anthropogenic noise and artificial night lighting have been shown to have substantial effects on animal behavior, physiology, and species interactions. Despite the large body of previous work, very few studies have studied the combined effects of light and noise pollution, especially experimentally in the field. Rodents are a highly diverse group that are predominantly nocturnal and occupy a wide range of habitats worldwide, frequently in close association with human development, placing them at a heightened risk from sensory disturbances. To test the singular and combined effects of various levels of anthropogenic light and noise exposure on pinyon mouse (Peromyscus truei) activity and body condition, we used standard trapping methods across a gradient of light and noise and the two combined and accounted for variation of moonlight, vegetation structure, and weather. We hypothesized that increased levels of artificial light would decrease trap success and lead to lower body condition due to an increase in perceived predation risk and that increased noise levels would increase trap success and body condition due to a reduction in predation risk and/or release from competition. Pinyon mouse trap success declined as light intensity increased, and the effect was comparable to that of moonlight, which is well known to influence rodent activity and perception of predation risk. Although noise pollution did not alter trap success of pinyon mice, individuals captured in noisier areas at the beginning of the season had lower body condition than those from quieter areas. Body condition was uninfluenced by noise and light later in the season. We also found no evidence of any additive or synergistic effects of the two stimuli. Our results provide evidence that alterations to the sensory environment from anthropogenic activity can affect wild rodents in several ways. As anthropogenic development increases to meet the demands of growing human populations, more ecosystems will be exposed to increased levels of sensory disturbance, making the understanding of how these changes affect wildlife critical to ongoing conservation efforts.

     
    more » « less
  2. Noise pollution can affect species' behaviours and distributions and may hold significant consequences for natural communities. While several studies have researched short-term effects of noise, no long-term research has examined whether observed patterns persist or if community recovery can occur. We used a long-term study system in New Mexico to examine the effects of continuous natural gas well noise exposure on seedling recruitment of foundational tree species ( Pinus edulis , Juniperus osteosperma ) and vegetation diversity. First, we examined seedling recruitment and vegetation diversity at plots where current noise levels have persisted for greater than 15 years. We then examined recruitment and diversity on plots where noise sources were recently removed or added. We found support for long-term negative effects of noise on tree seedling recruitment, evenness of woody plants and increasingly dissimilar vegetation communities with differences in noise levels. Furthermore, seedling recruitment and plant community composition did not recover following noise removal, possibly due in part to a lag in recovery among animals that disperse and pollinate plants. Our results add to the limited evidence that noise has cascading ecological effects. Moreover, these effects may be long lasting and noise removal may not lead to immediate recovery. 
    more » « less
  3. Abstract Urbanization is one of the most extreme forms of land transformation and results in changes to ecosystems and species compositions. As a result, there are strong directional selection pressures compared to nearby rural areas. Despite a surge in research on the different selection pressures on acoustic communication in urban and rural areas, there has been comparatively little investigation into traits involved with visual communication. We measured the plumage of museum specimens of white-crowned sparrows (Zonotrichia leucophrys) from urban and adjacent rural habitats in San Francisco, CA, to assess the effects of divergent habitats on plumage. We found significant differences in dorsal plumage, but not crown plumage, between urban and rural populations that have been diverging over the past 100 years. Urban birds have increasingly darker and duller dorsal plumage, whereas rural birds in adjacent areas have plumage with richer hues and more color complexity. Our findings suggest a newly observed adaptation to urban environments by native species and suggest that many traits, in addition to acoustic signals, may be changing in response to urban selection pressures. Additional collections in urban areas are needed to explore likely divergences in plumage coloration between urban and rural environments. 
    more » « less
  4. Human activity around the globe is a growing source of selection pressure on animal behavior and communication systems. Some animals can modify their vocalizations to avoid masking from anthropogenic noise. However, such modifications can also affect the salience of these vocalizations in functional contexts such as competition and mate choice. Such is the case in the well-studied Nuttall's white-crowned sparrow ( Zonotrichia leucophrys nuttalli ), which lives year-round in both urban San Francisco and nearby rural Point Reyes. A performance feature of this species' song is salient in territorial defense, such that higher performance songs elicit stronger responses in simulated territorial intrusions; but songs with lower performance values transmit better in anthropogenic noise. A key question then is whether vocal performance signals male quality and ability to obtain high quality territories in urban populations. We predicted white-crowned sparrows with higher vocal performance will be in better condition and will tend to hold territories with lower noise levels and more species-preferred landscape features. Because white-crowned sparrows are adapted to coastal scrub habitats, we expect high quality territories to contain lower and less dense canopies, less drought, more greenness, and more flat open ground for foraging. To test our predictions, we recorded songs and measured vocal performance and body condition (scaled mass index and fat score) for a set of urban and rural birds ( N = 93), as well as ambient noise levels on their territories. Remote sensing metrics measured landscape features of territories, such as drought stress (NDWI), greenness (NDVI), mean canopy height, maximum height, leaf area density (understory and canopy), slope, and percent bare ground for a 50 m radius on each male territory. We did not find a correlation between body condition and performance but did find a relationship between noise levels and performance. Further, high performers held territories with lower canopies and less dense vegetation, which are species-preferred landscape features. These findings link together fundamental aspects of sexual selection in that habitat quality and the quality of sexually selected signals appear to be associated: males that have the highest performing songs are defending territories of the highest quality. 
    more » « less
  5. null (Ed.)
  6. Actions taken to control the coronavirus disease 2019 (COVID-19) pandemic have conspicuously reduced motor vehicle traffic, potentially alleviating auditory pressures on animals that rely on sound for survival and reproduction. Here, by comparing soundscapes and songs across the San Francisco Bay Area before and during the recent statewide shutdown, we evaluated whether a common songbird responsively exploited newly emptied acoustic space. We show that noise levels in urban areas were substantially lower during the shutdown, characteristic of traffic in the mid-1950s. We also show that birds responded by producing higher performance songs at lower amplitudes, effectively maximizing communication distance and salience. These findings illustrate that behavioral traits can change rapidly in response to newly favorable conditions, indicating an inherent resilience to long-standing anthropogenic pressures such as noise pollution.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)
    Abstract Many animals learn to produce acoustic signals that are used to attract mates and defend territories. The structure of these signals can be influenced by external features of the environment, including the anthropogenic soundscape. In many sedentary species, habitat features and soundscape appears to influence the cultural evolution of songs, often with tradeoffs for better transmission over sexually selected song structure. However, none have investigated whether noise on the wintering grounds affects song structure, which for long-distance migrants may result in an acoustic ‘mismatch’ when returning to a breeding ground. This study investigates urban noise effects on song structure in a long-distance migrant, Zonotrichia leucophrys gambelii, on the wintering grounds in the Fresno Clovis Metropolitan Area and in outlying non-urban areas. Songs and background noise levels were recorded concurrently, and song measurements of frequency and duration were examined differences across noise levels and habitats . We found that the buzz and trill decrease in bandwidth in the presence of noise. The length of the whistle and buzz portion of the song also tends to decreases with noise in urban habitats. This trend toward short, pure tones in noisy areas may transmit better in noisy urban winter habitats, but may not be adaptive on quieter breeding grounds. We suggest that future studies should consider whether winter auditory feedback and song learning environments have consequences for song crystallization and breeding success for long-distance migrants. 
    more » « less