skip to main content


Search for: All records

Award ID contains: 1812531

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We combine 126 new galaxy-Oviabsorber pairs from the CGM2survey with 123 pairs drawn from the literature to examine the simultaneous dependence of the column density of Oviabsorbers (NOVI) on galaxy stellar mass, star-formation rate, and impact parameter. The combined sample consists of 249 galaxy-Oviabsorber pairs coveringz= 0–0.6, with host galaxy stellar massesM*= 107.8–1011.2Mand galaxy-absorber impact parametersR= 0–400 proper kiloparsecs. In this work, we focus on the variation ofNOVIwith galaxy mass and impact parameter among the star-forming galaxies in the sample. We find that the averageNOVIwithin one virial radius of a star-forming galaxy is greatest for star-forming galaxies withM*= 109.2–1010M. Star-forming galaxies withM*between 108and 1011.2Mcan explain most Ovisystems with column densities greater than 1013.5cm−2. Sixty percent of the Ovimass associated with a star-forming galaxy is found within one virial radius, and 35% is found between one and two virial radii. In general, we find that some departure from hydrostatic equilibrium in the CGM is necessary to reproduce the observed Oviamount, galaxy mass dependence, and extent. Our measurements serve as a test set for CGM models over a broad range of host galaxy masses.

     
    more » « less
  2. We use hydrodynamical simulations of two Milky Way-mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sightlines of the simulated galaxies' CGM and use Voigt profile fitting methods to extract ion column densities, Doppler-b parameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky-Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower OVI absorption features and broader SiIII absorption features, a quality which is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM. 
    more » « less
  3. Abstract The classical definition of the virial temperature of a galaxy halo excludes a fundamental contribution to the energy partition of the halo: the kinetic energy of nonthermal gas motions. Using simulations of low-redshift, ∼ L * galaxies from the Figuring Out Gas & Galaxies In Enzo (FOGGIE) project that are optimized to resolve low-density gas, we show that the kinetic energy of nonthermal motions is roughly equal to the energy of thermal motions. The simulated FOGGIE halos have ∼2× lower bulk temperatures than expected from a classical virial equilibrium, owing to significant nonthermal kinetic energy that is formally excluded from the definition of T vir . We explicitly derive a modified virial temperature including nonthermal gas motions that provides a more accurate description of gas temperatures for simulated halos in virial equilibrium. Strong bursts of stellar feedback drive the simulated FOGGIE halos out of virial equilibrium, but the halo gas cannot be accurately described by the standard virial temperature even when in virial equilibrium. Compared to the standard virial temperature, the cooler modified virial temperature implies other effects on halo gas: (i) the thermal gas pressure is lower, (ii) radiative cooling is more efficient, (iii) O vi absorbing gas that traces the virial temperature may be prevalent in halos of a higher mass than expected, (iv) gas mass estimates from X-ray surface brightness profiles may be incorrect, and (v) turbulent motions make an important contribution to the energy balance of a galaxy halo. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract Using the N -body+Smoothed particle hydrodynamics code, ChaNGa, we identify two merger-driven processes—disk disruption and supermassive black hole (SMBH) feedback—which work together to quench L * galaxies for over 7 Gyr. Specifically, we examine the cessation of star formation in a simulated Milky Way (MW) analog, driven by an interaction with two minor satellites. Both interactions occur within ∼100 Myr of each other, and the satellites both have masses 5–20 times smaller than that of their MW-like host galaxy. Using the genetic modification process of Roth et al., we generate a set of four zoom-in, MW-mass galaxies all of which exhibit unique star formation histories due to small changes to their assembly histories. In two of these four cases, the galaxy is quenched by z = 1. Because these are controlled modifications, we are able to isolate the effects of two closely spaced minor merger events, the relative timing of which determines whether the MW-mass main galaxy quenches. This one–two punch works to: (1) fuel the SMBH at its peak accretion rate and (2) disrupt the cold, gaseous disk of the host galaxy. The end result is that feedback from the SMBH thoroughly and abruptly ends the star formation of the galaxy by z ≈ 1. We search for and find a similar quenching event in R omulus 25, a hydrodynamical (25 Mpc) 3 volume simulation, demonstrating that the mechanism is common enough to occur even in a small sample of MW-mass quenched galaxies at z = 0. 
    more » « less
  7. ABSTRACT Quasar absorption systems encode a wealth of information about the abundances, ionization structure, and physical conditions in intergalactic and circumgalactic media. Simple (often single-phase) photoionization models are frequently used to decode such data. Using five discrete absorbers from the COS Absorption Survey of Baryon Harbors (CASBaH) that exhibit a wide range of detected ions (e.g. Mg ii, S ii – S vi, O ii – O vi, Ne viii), we show several examples where single-phase ionization models cannot reproduce the full set of measured column densities. To explore models that can self-consistently explain the measurements and kinematic alignment of disparate ions, we develop a Bayesian multiphase ionization modelling framework that characterizes discrete phases by their unique physical conditions and also investigates variations in the shape of the UV flux field, metallicity, and relative abundances. Our models require at least two (but favour three) distinct ionization phases ranging from T ≈ 104 K photoionized gas to warm-hot phases at T ≲ 105.8 K. For some ions, an apparently single absorption ‘component' includes contributions from more than one phase, and up to 30 per cent of the H i is not from the lowest ionization phase. If we assume that all of the phases are photoionized, we cannot find solutions in thermal pressure equilibrium. By introducing hotter, collisionally ionized phases, however, we can achieve balanced pressures. The best models indicate moderate metallicities, often with subsolar N/α, and, in two cases, ionizing flux fields that are softer and brighter than the fiducial Haardt & Madau UV background model. 
    more » « less
  8. null (Ed.)