skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1812554

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the first system that can airdrop wireless sensors from small drones and live insects. In addition to the challenges of achieving low-power consumption and long-range communication, airdropping wireless sensors is difficult because it requires the sensor to survive the impact when dropped in mid-air. Our design takes inspiration from nature: small insects like ants can fall from tall buildings and survive because of their tiny mass and size. Inspired by this, we design insect-scale wireless sensors that come fully integrated with an onboard power supply and a lightweight mechanical actuator to detach from the aerial platform. Our system introduces a first-of-its-kind 37 mg mechanical release mechanism to drop the sensor during flight, using only 450 μJ of energy as well as a wireless communication link that can transmit sensor data at 33 kbps up to 1 km. Once deployed, our 98 mg wireless sensor can run for 1.3-2.5 years when transmitting 10-50 packets per hour on a 68 mg battery. We demonstrate attachment to a small 28 mm wide drone and a moth (Manduca sexta) and show that our insect-scale sensors flutter as they fall, suffering no damage on impact onto a tile floor from heights of 22 m. 
    more » « less
  2. We present the first wireless protocol that scales to hundreds of concurrent transmissions from backscatter devices. Our key innovation is a distributed coding mechanism that works below the noise floor, operates on backscatter devices and can decode all the concurrent transmissions at the receiver using a single FFT operation.Our design addresses practical issues such as timing and frequency synchronization as well as the near-far problem. We deploy our design using a testbed of backscatter hardware and show that our protocol scales to concurrent transmissions from 256 devices using a bandwidth of only 500 kHz.Our results show throughput and latency improvements of14–62x and 15–67x over existing approaches and 1–2 orders of magnitude higher transmission concurrency. 
    more » « less
  3. We present the first wireless protocol that scales to hundreds of concurrent transmissions from backscatter devices. Our key innovation is a distributed cod- ing mechanism that works below the noise floor, operates on backscatter devices and can decode all the concurrent transmissions at the receiver using a single FFT operation. Our design addresses practical issues such as timing and fre- quency synchronization as well as the near-far problem. We deploy our design using a testbed of backscatter hardware and show that our protocol scales to concurrent transmis- sions from 256 devices using a bandwidth of only 500 kHz. Our results show throughput and latency improvements of 14–62x and 15–67x over existing approaches and 1–2 orders of magnitude higher transmission concurrency. 
    more » « less