skip to main content


Search for: All records

Award ID contains: 1812641

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available November 1, 2024
  3. Free, publicly-accessible full text available November 1, 2024
  4. Free, publicly-accessible full text available July 25, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Gorodkin, Jan (Ed.)
    Abstract Motivation When learning to subtype complex disease based on next-generation sequencing data, the amount of available data is often limited. Recent works have tried to leverage data from other domains to design better predictors in the target domain of interest with varying degrees of success. But they are either limited to the cases requiring the outcome label correspondence across domains or cannot leverage the label information at all. Moreover, the existing methods cannot usually benefit from other information available a priori such as gene interaction networks. Results In this article, we develop a generative optimal Bayesian supervised domain adaptation (OBSDA) model that can integrate RNA sequencing (RNA-Seq) data from different domains along with their labels for improving prediction accuracy in the target domain. Our model can be applied in cases where different domains share the same labels or have different ones. OBSDA is based on a hierarchical Bayesian negative binomial model with parameter factorization, for which the optimal predictor can be derived by marginalization of likelihood over the posterior of the parameters. We first provide an efficient Gibbs sampler for parameter inference in OBSDA. Then, we leverage the gene-gene network prior information and construct an informed and flexible variational family to infer the posterior distributions of model parameters. Comprehensive experiments on real-world RNA-Seq data demonstrate the superior performance of OBSDA, in terms of accuracy in identifying cancer subtypes by utilizing data from different domains. Moreover, we show that by taking advantage of the prior network information we can further improve the performance. Availability and implementation The source code for implementations of OBSDA and SI-OBSDA are available at the following link. https://github.com/SHBLK/BSDA. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less