skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1812666

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We propose a new fully‐discretized finite difference scheme for a quantum diffusion equation, in both one and two dimensions. This is the first fully‐discretized scheme with proven positivity‐preserving and energy stable properties using only standard finite difference discretization. The difficulty in proving the positivity‐preserving property lies in the lack of a maximum principle for fourth order partial differential equations. To overcome this difficulty, we reformulate the scheme as an optimization problem based on a variational structure and use the singular nature of the energy functional near the boundary values to exclude the possibility of non‐positive solutions. The scheme is also shown to be mass conservative and consistent.

     
    more » « less