skip to main content


Search for: All records

Award ID contains: 1812966

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wearable fingertip haptic interfaces provide tac- tile stimuli on the fingerpads by applying skin pressure, linear and rotational shear, and vibration. Designing and fabricating a compact, multi-degree-of-freedom, and forceful fingertip haptic interface is challenging due to trade-offs among miniatur- ization, multifunctionality, and manufacturability. Downsizing electromagnetic actuators that produce high torques is infea- sible, and integrating multiple actuators, links, joints, and transmission elements increases device size and weight. 3-D printing enables rapid manufacturing of complex devices with minimal assembly in large batches. However, it requires a careful arrangement of material properties, geometry, scale, and printer capabilities. Here we present a fully 3-D printed, soft, monolithic fingertip haptic device based on an origami pattern known as the “waterbomb” base that embeds foldable vacuum actuation and produces 4-DoF of motion on the fingerpad with tunable haptic forces (up to 1.3 N shear and 7 N normal) and torque (up to 25 N-mm). Including the thimble mounting, the compact device is 40 mm long and 20 mm wide. This demonstrates the efficacy of origami design and soft material 3D printing for designing and rapidly fabricating miniature yet complex wearable mechanisms with force output appropriate for haptic interaction. 
    more » « less
  2. null (Ed.)