skip to main content


Search for: All records

Award ID contains: 1813466

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a series of high-resolution echelle spectra of SN 2023ixf in M101, obtained nightly during the first week or so after discovery using PEPSI on the Large Binocular Telescope. NaiD absorption in these spectra indicates a host reddening ofE(BV) = 0.031 mag and a systemic velocity of +7 km s−1relative to the average redshift of M101. Dramatic changes are seen in the strength and shape of strong emission lines emitted by circumstellar material (CSM), including Heiiλ4686, Civλλ5801,5811, Hα, and Nivλλ7109,7123. In general, these narrow lines broaden to become intermediate-width lines before disappearing from the spectrum within a few days, indicating a limited extent to the dense CSM of around 20–30 au (or ≲1014.7cm). Hαpersists in the spectrum for about a week as an intermediate-width emission line with P Cyg absorption at 700–1300 km s−1arising in the post-shock shell of swept-up CSM. Early narrow emission lines are blueshifted and indicate an expansion speed in the pre-shock CSM of about 115 km s−1, but with even broader emission in higher-ionization lines. This is faster than the normal winds of red supergiants, suggesting some mode of eruptive mass loss from the progenitor or radiative acceleration of the CSM. A lack of narrow blueshifted absorption suggests that most of the CSM is not along our line of sight. This and several other clues indicate that the CSM of SN 2023ixf is significantly aspherical. We find that CSM lines disappear after a few days because the asymmetric CSM is engulfed by the supernova photosphere.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract

    We perform a comprehensive search for optical precursor emission at the position of SN 2023ixf using data from the DLT40, ZTF, and ATLAS surveys. By comparing the current data set with precursor outburst hydrodynamical model light curves, we find that the probability of a significant outburst within 5 yr of explosion is low, and the circumstellar material (CSM) ejected during any possible precursor outburst is likely smaller than ∼0.015M. By comparing to a set of toy models, we find that, if there was a precursor outburst, the duration must have been shorter than ∼100 days for a typical brightness ofMr≃ −9 mag or shorter than 200 days forMr≃ −8 mag; brighter, longer outbursts would have been discovered. Precursor activity like that observed in the normal Type II SN 2020tlf (Mr≃ −11.5) can be excluded in SN 2023ixf. If the dense CSM inferred by early flash spectroscopy and other studies is related to one or more precursor outbursts, then our observations indicate that any such outburst would have to be faint and only last for days to months, or it occurred more than 5 yr prior to the explosion. Alternatively, any dense, confined CSM may not be due to eruptive mass loss from a single red supergiant progenitor. Taken together, the results of SN 2023ixf and SN 2020tlf indicate that there may be more than one physical mechanism behind the dense CSM inferred around some normal Type II supernovae.

     
    more » « less
  3. Abstract

    Type Ia supernovae (SNe Ia) are important cosmological tools, probes of binary star evolution, and contributors to cosmic metal enrichment; yet, a definitive understanding of the binary star systems that produce them remains elusive. Of particular interest is the identity of the mass-donor companion to the exploding carbon–oxygen white dwarf (CO WD). In this work, we present early-time (first observation within 10 days post-explosion) radio observations of six nearby (within 40 Mpc) SNe Ia taken by the Jansky Very Large Array, which are used to constrain the presence of synchrotron emission from the interaction between ejecta and circumstellar material (CSM). The two motivations for these early-time observations are: (1) to constrain the presence of low-density winds and (2) to provide an additional avenue of investigation for those SNe Ia observed to have early-time optical/UV excesses that may be due to CSM interaction. We detect no radio emission from any of our targets. Toward our first aim, these non-detections further increase the sample of SNe Ia that rule out winds from symbiotic binaries and strongly accreting white dwarfs. and discuss the dependence on underlying model assumptions and how our observations represent a large increase in the sample of SNe Ia with low-density wind constraints. For the second aim, we present a radiation hydrodynamics simulation to explore radio emission from an SN Ia interacting with a compact shell of CSM, and find that relativistic electrons cannot survive to produce radio emission despite the rapid expansion of the shocked shell after shock breakout. The effects of model assumptions are discussed for both the wind and compact shell conclusions.

     
    more » « less
  4. Abstract

    We present the optical spectroscopic evolution of SN 2023ixf seen in subnight cadence spectra from 1.18 to 15 days after explosion. We identify high-ionization emission features, signatures of interaction with material surrounding the progenitor star, that fade over the first 7 days, with rapid evolution between spectra observed within the same night. We compare the emission lines present and their relative strength to those of other supernovae with early interaction, finding a close match to SN 2020pni and SN 2017ahn in the first spectrum and SN 2014G at later epochs. To physically interpret our observations, we compare them to CMFGEN models with confined, dense circumstellar material around a red supergiant (RSG) progenitor from the literature. We find that very few models reproduce the blended Niii(λλ4634.0,4640.6)/Ciii(λλ4647.5,4650.0) emission lines observed in the first few spectra and their rapid disappearance thereafter, making this a unique diagnostic. From the best models, we find a mass-loss rate of 10−3–10−2Myr−1, which far exceeds the mass-loss rate for any steady wind, especially for an RSG in the initial mass range of the detected progenitor. These mass-loss rates are, however, similar to rates inferred for other supernovae with early circumstellar interaction. Using the phase when the narrow emission features disappear, we calculate an outer dense radius of circumstellar materialRCSM,out≈ 5 × 1014cm, and a mean circumstellar material density ofρ= 5.6 × 10−14g cm−3. This is consistent with the lower limit on the outer radius of the circumstellar material we calculate from the peak Hαemission flux,RCSM,out≳ 9 × 1013cm.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  5. Abstract

    We present the densely sampled early light curve of the Type II supernova (SN) 2023ixf, first observed within hours of explosion in the nearby Pinwheel Galaxy (Messier 101; 6.7 Mpc). Comparing these data to recently updated models of shock-cooling emission, we find that the progenitor likely had a radius of 410 ± 10R. Our estimate is model dependent but consistent with a red supergiant. These models provide a good fit to the data starting about 1 day after the explosion, despite the fact that the classification spectrum shows signatures of circumstellar material around SN 2023ixf during that time. Photometry during the first day after the explosion, provided almost entirely by amateur astronomers, does not agree with the shock-cooling models or a simple power-law rise fit to data after 1 day. We consider the possible causes of this discrepancy, including precursor activity from the progenitor star, circumstellar interaction, and emission from the shock before or after it breaks out of the stellar surface. The very low luminosity (−11 mag >M> −14 mag) and short duration of the initial excess lead us to prefer a scenario related to prolonged emission from the SN shock traveling through the progenitor system.

     
    more » « less
  6. Abstract

    We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining Type Ia supernova (SN Ia) in NGC 1784 (D≈ 31 Mpc), from <1 to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion, which are critical to distinguishing between explosion scenarios. The early light curve of SN 2022xkq has a red early color and exhibits a flux excess that is more prominent in redder bands; this is the first time such a feature has been seen in a transitional/91bg-like SN Ia. We also present 92 optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a long-lived Ci1.0693μm feature that persists until 5 days post-maximum. We also detect Ciiλ6580 in the pre-maximum optical spectra. These lines are evidence for unburnt carbon that is difficult to reconcile with the double detonation of a sub-Chandrasekhar mass white dwarf. No existing explosion model can fully explain the photometric and spectroscopic data set of SN 2022xkq, but the considerable breadth of the observations is ideal for furthering our understanding of the processes that produce faint SNe Ia.

     
    more » « less
  7. ABSTRACT

    We report on analysis using the JWST to identify a candidate progenitor star of the Type II-plateau (II-P) supernova SN 2022acko in the nearby, barred spiral galaxy NGC 1300. To our knowledge, our discovery represents the first time JWST has been used to localize a progenitor system in pre-explosion archival Hubble Space Telescope (HST) images. We astrometrically registered a JWST NIRCam image from 2023 January, in which the SN was serendipitously captured, to pre-SN HST F160W and F814W images from 2017 and 2004, respectively. An object corresponding precisely to the SN position has been isolated with reasonable confidence. That object has a spectral energy distribution (SED) and overall luminosity consistent with a single-star model having an initial mass possibly somewhat less than the canonical 8 M⊙ theoretical threshold for core collapse (although masses as high as 9 M⊙ for the star are also possible); however, the star’s SED and luminosity are inconsistent with that of a super-asymptotic giant branch star that might be a forerunner of an electron-capture SN. The properties of the progenitor alone imply that SN 2022acko is a relatively normal SN II-P, albeit most likely a low-luminosity one. The progenitor candidate should be confirmed with follow-up HST imaging at late times, when the SN has sufficiently faded. This potential use of JWST opens a new era of identifying SN progenitor candidates at high spatial resolution.

     
    more » « less
  8. Abstract

    We present very early photometric and spectroscopic observations of the Type Ia supernova (SN Ia) 2023bee, starting about 8 hr after the explosion, which reveal a strong excess in the optical and nearest UV (UandUVW1) bands during the first several days of explosion. This data set allows us to probe the nature of the binary companion of the exploding white dwarf and the conditions leading to its ignition. We find a good match to the Kasen model in which a main-sequence companion star stings the ejecta with a shock as they buzz past. Models of double detonations, shells of radioactive nickel near the surface, interaction with circumstellar material, and pulsational delayed detonations do not provide good matches to our light curves. We also observe signatures of unburned material, in the form of carbon absorption, in our earliest spectra. Our radio nondetections place a limit on the mass-loss rate from the putative companion that rules out a red giant but allows a main-sequence star. We discuss our results in the context of other similar SNe Ia in the literature.

     
    more » « less
  9. Abstract

    We present photometric and spectroscopic data of SN 2018lab, a low-luminosity Type IIP supernova (LLSN) with aV-band peak luminosity of −15.1 ± 0.1 mag. SN 2018lab was discovered by the Distance Less Than 40 Mpc (DLT40) SN survey only 0.73 days post-explosion, as determined by observations from the Transiting Exoplanet Survey Satellite (TESS). TESS observations of SN 2018lab yield a densely sampled, fast-rising, early-time light curve likely powered by ejecta–circumstellar medium (CSM) interaction. The blueshifted, broadened flash feature in the earliest spectra (<2 days) of SN 2018lab provides further evidence for ejecta–CSM interaction. The early emission features in the spectra of SN 2018lab are well described by models of a red supergiant progenitor with an extended envelope and a close-in CSM. As one of the few LLSNe with observed flash features, SN 2018lab highlights the need for more early spectra to explain the diversity of the flash feature morphology of Type II SNe.

     
    more » « less
  10. Abstract

    We present five far- and near-ultraviolet spectra of the Type II plateau supernova, SN 2022acko, obtained 5, 6, 7, 19, and 21 days after explosion, all observed with the Hubble Space Telescope/Space Telescope Imaging Spectrograph. The first three epochs are earlier than any Type II plateau supernova has been observed in the far-ultraviolet revealing unprecedented characteristics. These three spectra are dominated by strong lines, primarily from metals, which contrasts with the featureless early optical spectra. The flux decreases over the initial time series as the ejecta cool and line blanketing takes effect. We model this unique data set with the non–local thermodynamic equilibrium radiation transport codeCMFGEN, finding a good match to the explosion of a low-mass red supergiant with energyEkin= 6 × 1050erg. With these models we identify, for the first time, the ions that dominate the early ultraviolet spectra. We present optical photometry and spectroscopy, showing that SN 2022acko has a peak absolute magnitude ofV= − 15.4 mag and plateau length of ∼115 days. The spectra closely resemble those of SN 2005cs and SN 2012A. Using the combined optical and ultraviolet spectra, we report the fraction of flux as a function of bluest wavelength on days 5, 7, and 19. We create a spectral time-series of Type II supernovae in the ultraviolet, demonstrating the rapid decline of flux over the first few weeks of evolution. Future observations of Type II supernovae are required to map out the landscape of exploding red supergiants, with and without circumstellar material, which is best revealed in high-quality ultraviolet spectra.

     
    more » « less