skip to main content


Search for: All records

Award ID contains: 1813814

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a d -dimensional Schrödinger equation with η particles can be simulated with gate complexity O ~ ( η d F poly ( log ⁡ ( g ′ / ϵ ) ) ) , where ϵ is the discretization error, g ′ controls the higher-order derivatives of the wave function, and F measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on ϵ and g ′ from poly ( g ′ / ϵ ) to poly ( log ⁡ ( g ′ / ϵ ) ) and polynomially improves the dependence on T and d , while maintaining best known performance with respect to η . For the case of Coulomb interactions, we give an algorithm using η 3 ( d + η ) T poly ( log ⁡ ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates, and another using η 3 ( 4 d ) d / 2 T poly ( log ⁡ ( η d T g ′ / ( Δ ϵ ) ) ) / Δ one- and two-qubit gates and QRAM operations, where T is the evolution time and the parameter Δ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization. 
    more » « less
  2. A spatial search was performed using quantum walks of strontium-88 atoms in a combined optical tweezer-lattice platform. 
    more » « less
  3. Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear ordinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity p o l y ( 1 / ϵ ) , where ϵ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be p o l y ( d , log ⁡ ( 1 / ϵ ) ) , where d is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations. 
    more » « less
  4. null (Ed.)
    We present methods for implementing arbitrary permutations of qubits under interaction constraints. Our protocols make use of previous methods for rapidly reversing the order of qubits along a path. Given nearest-neighbor interactions on a path of length n , we show that there exists a constant ϵ ≈ 0.034 such that the quantum routing time is at most ( 1 − ϵ ) n , whereas any swap-based protocol needs at least time n − 1 . This represents the first known quantum advantage over swap-based routing methods and also gives improved quantum routing times for realistic architectures such as grids. Furthermore, we show that our algorithm approaches a quantum routing time of 2 n / 3 in expectation for uniformly random permutations, whereas swap-based protocols require time n asymptotically. Additionally, we consider sparse permutations that route k ≤ n qubits and give algorithms with quantum routing time at most n / 3 + O ( k 2 ) on paths and at most 2 r / 3 + O ( k 2 ) on general graphs with radius r . 
    more » « less
  5. null (Ed.)
    Nonlinear differential equations model diverse phenomena but are notoriously difficult to solve. While there has been extensive previous work on efficient quantum algorithms for linear differential equations, the linearity of quantum mechanics has limited analogous progress for the nonlinear case. Despite this obstacle, we develop a quantum algorithm for dissipative quadratic n-dimensional ordinary differential equations. Assuming R < 1 , where R is a parameter characterizing the ratio of the nonlinearity and forcing to the linear dissipation, this algorithm has complexity T 2 q   poly ( log ⁡ T , log ⁡ n , log ⁡ 1 / ϵ ) / ϵ , where T is the evolution time, ϵ is the allowed error, and q measures decay of the solution. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T. While exponential decay precludes efficiency, driven equations can avoid this issue despite the presence of dissipation. Our algorithm uses the method of Carleman linearization, for which we give a convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for R ≥ 2 . Finally, we discuss potential applications, showing that the R < 1 condition can be satisfied in realistic epidemiological models and giving numerical evidence that the method may describe a model of fluid dynamics even for larger values of R. 
    more » « less
  6. null (Ed.)
    Inspired by recent progress in quantum algorithms for ordinary and partial differential equations, we study quantum algorithms for stochastic differential equations (SDEs). Firstly we provide a quantum algorithm that gives a quadratic speed-up for multilevel Monte Carlo methods in a general setting. As applications, we apply it to compute expectation values determined by classical solutions of SDEs, with improved dependence on precision. We demonstrate the use of this algorithm in a variety of applications arising in mathematical finance, such as the Black-Scholes and Local Volatility models, and Greeks. We also provide a quantum algorithm based on sublinear binomial sampling for the binomial option pricing model with the same improvement. 
    more » « less
  7. null (Ed.)