skip to main content

Search for: All records

Award ID contains: 1814147

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider transport of a passive scalar advected by an irregular divergence-free vector field. Given any non-constant initial data ρ ¯ ∈ H loc 1 ( R d ) , d ≥ 2 , we construct a divergence-free advecting velocity field v (depending on ρ ¯ ) for which the unique weak solution to the transport equation does not belong to H loc 1 ( R d ) for any positive time. The velocity field v is smooth, except at one point, controlled uniformly in time, and belongs to almost every Sobolev space W s , p that does notmore »embed into the Lipschitz class. The velocity field v is constructed by pulling back and rescaling a sequence of sine/cosine shear flows on the torus that depends on the initial data. This loss of regularity result complements that in Ann. PDE , 5(1):Paper No. 9, 19, 2019. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.« less
    Free, publicly-accessible full text available June 13, 2023