Spectropolarimetry enables us to measure the geometry and chemical structure of the ejecta in supernova explosions, which is fundamental for the understanding of their explosion mechanism(s) and progenitor systems. We collected archival data of 35 Type Ia supernovae (SNe Ia), observed with Focal Reducer and Low-Dispersion Spectrograph (FORS) on the Very Large Telescope at 127 epochs in total. We examined the polarization of the Si ii λ6355 Å line ($p_{\rm Si\, \small {II}}$) as a function of time, which is seen to peak at a range of various polarization degrees and epochs relative to maximum brightness. We reproduced the $\Delta m_{15}\!-\!p_{\rm Si\, \small {II}}$ relationship identified in a previous study, and show that subluminous and transitional objects display polarization values below the $\Delta m_{15}\!-\!p_{\rm Si\, \small {II}}$ relationship for normal SNe Ia. We found a statistically significant linear relationship between the polarization of the Si ii λ6355 Å line before maximum brightness and the Si ii line velocity and suggest that this, along with the $\Delta m_{15}\!-\!p_{\rm Si\, \small {II}}$ relationship, may be explained in the context of a delayed-detonation model. In contrast, we compared our observations to numerical predictions in the $\Delta m_{15}\!-\!v_{\rm Si\, \small {II}}$ plane and found a dichotomy in the polarization propertiesmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract SN 2018ivc is an unusual Type II supernova (SN II). It is a variant of SNe IIL, which might represent a transitional case between SNe IIP with a massive H-rich envelope and SNe IIb with only a small amount of the H-rich envelope. However, SN 2018ivc shows an optical light-curve evolution more complicated than that of canonical SNe IIL. In this paper, we present the results of prompt follow-up observations of SN 2018ivc with the Atacama Large Millimeter/submillimeter Array. Its synchrotron emission is similar to that of SN IIb 1993J, suggesting that it is intrinsically an SN IIb–like explosion of an He star with a modest (∼0.5–1 M ⊙ ) extended H-rich envelope. Its radio, optical, and X-ray light curves are explained primarily by the interaction between the SN ejecta and the circumstellar material (CSM); we thus suggest that it is a rare example (and the first involving the “canonical” SN IIb ejecta) for which the multiwavelength emission is powered mainly by the SN–CSM interaction. The inner CSM density, reflecting the progenitor activity in the final decade, is comparable to that of SN IIb 2013cu, which shows a flash spectral feature. The outer CSM density, and therefore the mass-lossmore »Free, publicly-accessible full text available December 29, 2023
-
Abstract SN 2014C was originally classified as a Type Ib supernova, but at phase ϕ = 127 days, post-explosion strong H α emission was observed. SN 2014C has since been observed in radio, infrared, optical and X-ray bands. Here we present new optical spectroscopic and photometric data spanning ϕ = 947–2494 days post-explosion. We address the evolution of the broadened H α emission line, as well as broad [O iii ] emission and other lines. We also conduct a parallel analysis of all publicly available multiwavelength data. From our spectra, we find a nearly constant H α FWHM velocity width of ∼2000 km s −1 that is significantly lower than that of other broadened atomic transitions (∼3000–7000 km s −1 ) present in our spectra ([O i ] λ 6300; [O iii ] λ λ 4959, 5007; He i λ 7065; [Ca ii ] λ λ 7291, 7324). The late radio data demand a fast forward shock (∼10,000 km s −1 at ϕ = 1700 days) in rarified matter that contrasts with the modest velocity of the H α . We propose that the infrared flux originates from a toroidal-like structure of hydrogen surrounding the progenitor system, while later emissionmore »
-
ABSTRACT SN 1993J is one of the best-studied Type IIb supernovae. Spectropolarimetric data analyses were published over two decades ago at a time when the field of supernova spectropolarimetry was in its infancy. Here, we present a new analysis of the spectropolarimetric data of SN 1993J and an improved estimate of its interstellar polarization (ISP) as well as a critical review of ISP removal techniques employed in the field. The polarization of SN 1993J is found to show significant alignment on the q − u plane, suggesting the presence of a dominant axis and therefore of continuum polarization. We also see strong line polarization features, including H β, He i λ5876, H α, He i λ6678, He i λ7065, and high velocity (HV) components of He i λ5876 and H α. SN 1993J is therefore the second example of a stripped-envelope supernova, alongside iPTF13bvn, with prominent HV helium polarization features, and the first to show a likely HV H α contribution. Overall, we determine that the observed features can be interpreted as the superposition of anisotropically distributed line forming regions over ellipsoidal ejecta. We cannot exclude the possibility of an off-axis energy source within the ejecta. These data demonstrate the rich structures that are inaccessible if solely consideringmore »
-
Supernova LSQ13abf was discovered soon after explosion by the La Silla-QUEST Survey and then followed by the Carnegie Supernova Project II at its optical and near-IR wavelengths. Our analysis indicates that LSQ13abf was discovered within two days of explosion and its first ≈10 days of evolution reveal a B -band light curve with an abrupt drop in luminosity. Contemporaneously, the V -band light curve exhibits a rise towards a first peak and the r - and i -band light curves show no early peak. The early light-curve evolution of LSQ13abf is reminiscent of the post-explosion cooling phase observed in the Type Ib SN 2008D, and the similarity between the two objects extends over weeks. Spectroscopically, LSQ13abf also resembles SN 2008D, with P Cygni He I features that strengthen over several weeks. Spectral energy distributions are constructed from the broad-bandphotometry, a UVOIR light curve is constructed by fitting black-body (BB) functions, and the underlying BB-temperature and BB-radius profiles are estimated. Explosion parameters are estimated by simultaneously fitting an Arnett model to the UVOIR light curve and the velocity evolution derived from spectral features, and an in addition to a post-shock breakout cooling model to the first two epochs of the bolometricmore »