skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1814327

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT Zahn’s widely used model for turbulent mixing induced by rotational shear has recently been validated (with some caveats) in non-rotating shear flows. It is not clear, however, whether his model remains valid in the presence of rotation, even though this was its original purpose. Furthermore, new instabilities arise in rotating fluids, such as the Goldreich–Schubert–Fricke (GSF) instability. Which instability dominates when more than one can be excited, and how they influence each other, were open questions that this paper answers. To do so, we use direct numerical simulations of diffusive stratified shear flows in a rotating triply periodic Cartesian domain located at the equator of a star. We find that either the GSF instability or the shear instability tends to take over the other in controlling the system, suggesting that stellar evolution models only need to have a mixing prescription for each individual instability, together with a criterion to determine which one dominates. However, we also find that it is not always easy to predict which instability ‘wins’ for given input parameters, because the diffusive shear instability is subcritical, and only takes place if there is a finite-amplitude turbulence ‘primer’ to seed it. Interestingly, we find that the GSF instability can in some cases play the role of this primer, thereby providing a pathway to excite the subcritical shear instability. This can also drive relaxation oscillations, which may be observable. We conclude by proposing a new model for mixing in the equatorial regions of stellar radiative zones due to differential rotation. 
    more » « less
  2. Monteiro, M.J.P.F.G. (Ed.)
    The solar tachocline is a shear layer located at the base of the solar convection zone. The horizontal shear in the tachocline is likely turbulent, and it is often assumed that this turbulence would be strongly anisotropic as a result of the local stratification. What role this turbulence plays in the tachocline dynamics, however, remains to be determined. In particular, it is not clear whether it would result in a turbulent eddy diffusivity, or anti-diffusivity, or something else entirely. In this paper, we present the first direct numerical simulations of turbulence in horizontal shear flows at low Prandtl number, in an idealized model that ignores rotation and magnetic fields. We find that several regimes exist, depending on the relative importance of the stratification, viscosity and thermal diffusivity. Our results suggest that the tachocline is in the stratified turbulence regime, which has very specific properties controlled by a balance between buoyancy, inertia, and thermal diffusion. 
    more » « less
  3. null (Ed.)
    We consider the dynamics of a vertically stratified, horizontally forced Kolmogorov flow. Motivated by astrophysical systems where the Prandtl number is often asymptotically small, our focus is the little-studied limit of high Reynolds number but low Péclet number (which is defined to be the product of the Reynolds number and the Prandtl number). Through a linear stability analysis, we demonstrate that the stability of two-dimensional modes to infinitesimal perturbations is independent of the stratification, whilst three-dimensional modes are always unstable in the limit of strong stratification and strong thermal diffusion. The subsequent nonlinear evolution and transition to turbulence are studied numerically using direct numerical simulations. For sufficiently large Reynolds numbers, four distinct dynamical regimes naturally emerge, depending upon the strength of the background stratification. By considering dominant balances in the governing equations, we derive scaling laws for each regime which explain the numerical data. 
    more » « less