Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)A potential motion of ideal incompressible fluid with a free surface and infinite depth is considered in two-dimensional geometry. A time-dependent conformal mapping of the lower complex half-plane of the auxiliary complex variable w into the area filled with fluid is performed with the real line of w mapped into the free fluid’s surface. The fluid dynamics can be fully characterized by the motion of the complex singularities in the analytical continuation of both the conformal mapping and the complex velocity. We consider the short branch cut approximation of the dynamics with the small parameter being the ratio of the length of the branch cut to the distance between its centre and the real line of w . We found that the fluid dynamics in that approximation is reduced to the complex Hopf equation for the complex velocity coupled with the complex transport equation for the conformal mapping. These equations are fully integrable by characteristics producing the infinite family of solutions, including moving square root branch points and poles. These solutions involve practical initial conditions resulting in jets and overturning waves. The solutions are compared with the simulations of the fully nonlinear Eulerian dynamics giving excellent agreement even when the small parameter approaches about one.more » « less
-
null (Ed.)We consider the developed turbulence of capillary waves on shallow water. Analytic theory shows that an isotropic cascade spectrum is unstable with respect to small angular perturbations, in particular, to spontaneous breakdown of the reflection symmetry and generation of nonzero momentum. By computer modeling we show that indeed a random pumping, generating on average zero momentum, produces turbulence with a nonzero total momentum. A strongly anisotropic large-scale pumping produces turbulence whose degree of anisotropy decreases along a cascade. It tends to saturation in the inertial interval and then further decreases in the dissipation interval. Surprisingly, neither the direction of the total momentum nor the direction of the compensated spectrum anisotropy is locked by our square box preferred directions (side or diagonal) but fluctuate.more » « less
-
We consider the motion of ideal incompressible fluid with free surface. We analyzed the exact fluid dynamics through the time-dependent conformal mapping z=x+iy=z(w,t) of the lower complex half plane of the conformal variable w into the area occupied by fluid. We established the exact results on the existence vs. nonexistence of the pole and power law branch point solutions for 1/zw and the complex velocity. We also proved the nonexistence of the time-dependent rational solution of that problem for the second- and the first-order moving pole.more » « less