skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1814659

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Increasing temperatures have raised concerns over the potential effect on disease spread. Temperature is a well known factor affecting mosquito population dynamics and the development rate of the malaria parasite within the mosquito, and consequently, malaria transmission. A sinusoidal wave is commonly used to incorporate temperature effects in malaria models, however, we introduce a seasonal malaria framework that links data on temperature-dependent mosquito and parasite demographic traits to average monthly regional temperature data, without forcing a sinusoidal t to the data. We introduce a spline methodology that maps temperature-dependent mosquito traits to time-varying model parameters. The resulting non-autonomous system of differential equations is used to study the impact of seasonality on malaria transmission dynamics and burden in a high and low malaria transmission region in Malawi. We present numerical simulations illustrating how temperature shifts alter the entomological inoculation rate and the number of malaria infections in these regions. 
    more » « less
  2. A model with both casual and long-term partnerships is considered with respect to the impact of a pre-exposure prophylaxis (PrEP) on the spread of HIV. We consider the effect of the effectiveness of PrEP, the rate that susceptible individuals choose to take PrEP, and compliance with the daily dose of the pre-exposure prophylaxis. The rate of infection in long-term partnerships is computed using a linearized expected value as a means for including the nonlocal effects of long-term partnerships while maintaining computational feasibility. The reproduction numbers for models with casual partnerships, long-term partnerships, and a combination of both are analytically computed and global stability of both disease-free and endemic equilibria is shown. Sensitivity and PRCC analysis results suggest that increasing the compliance among the current PrEP users is a more effective strategy in the fight against the HIV epidemic than increased coverage with poor compliance. Furthermore, an analysis of the reproduction number shows that models with either casual or monogamous long-term partnerships can reach the desired $$ R_0 < 1 $$ threshold for high enough levels of compliance and uptake, however, a model with both casual and monogamous long-term partnerships will require additional interventions. Methods highlighted in this manuscript are applicable to other incurable diseases or diseases with imperfect vaccines effected by long-term partnerships. 
    more » « less