skip to main content

Search for: All records

Award ID contains: 1815833

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The recent detection of a neutron star merger by the LIGO collaboration has renewed interest in laboratory studies of r-process elements. Accurate modeling and interpretation of the electromagnetic transients following the mergers requires computationally expensive calculations of both the structure and opacity of all trans-iron elements. To date, the necessary atomic data to benchmark structure codes are incomplete or, in some cases, absent entirely. Within the available laboratory studies, the literature on Au I and Au II provides incomplete reports of the emission lines and level structures. We present a new study of Au I and Au II lines and levels by exposing a solid gold target to plasma in the Compact Toroidal Hybrid (CTH) experiment at Auburn University. A wavelength range from 187 to 800nm was studied. In Au I, 86 lines are observed, 43 of which are unreported in the literature, and the energies of 18 5d96s6plevels and 16 of the 18 known 5d96s6dlevels are corroborated by a least-squares level energy optimization. In Au II, 76 emission lines are observed, and 51 of the lines are unreported in the literature. For both Au I and Au II, the new lines predominantly originate from the most energetic of the known levels, and over half of the new Au II lines have wavelengths longer than 300 nm. For the estimated electron parameters of CTH plasmas at the gold target (ne∼1012 cm−3, Te∼10 eV), two-electron transitions are similar in intensity to LS-allowed one-electron transitions. 
    more » « less