skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1816504

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Adverse event detection is critical for many real-world applications including timely identification of product defects, disasters, and major socio-political incidents. In the health context, adverse drug events account for countless hospitalizations and deaths annually. Since users often begin their information seeking and reporting with online searches, examination of search query logs has emerged as an important detection channel. However, search context - including query intent and heterogeneity in user behaviors - is extremely important for extracting information from search queries, and yet the challenge of measuring and analyzing these aspects has precluded their use in prior studies. We propose DeepSAVE, a novel deep learning framework for detecting adverse events based on user search query logs. DeepSAVE uses an enriched variational autoencoder encompassing a novel query embedding and user modeling module that work in concert to address the context challenge associated with search-based detection of adverse events. Evaluation results on three large real-world event datasets show that DeepSAVE outperforms existing detection methods as well as comparison deep learning auto encoders. Ablation analysis reveals that each component of DeepSAVE significantly contributes to its overall performance. Collectively, the results demonstrate the viability of the proposed architecture for detecting adverse events from search query logs. 
    more » « less
  2. Psychometric measures reflecting people’s knowledge, ability, attitudes, and personality traits are critical for many real-world applications, such as e-commerce, health care, and cybersecurity. However, traditional methods cannot collect and measure rich psychometric dimensions in a timely and unobtrusive manner. Consequently, despite their importance, psychometric dimensions have received limited attention from the natural language processing and information retrieval communities. In this article, we propose a deep learning architecture, PyNDA, to extract psychometric dimensions from user-generated texts. PyNDA contains a novel representation embedding, a demographic embedding, a structural equation model (SEM) encoder, and a multitask learning mechanism designed to work in unison to address the unique challenges associated with extracting rich, sophisticated, and user-centric psychometric dimensions. Our experiments on three real-world datasets encompassing 11 psychometric dimensions, including trust, anxiety, and literacy, show that PyNDA markedly outperforms traditional feature-based classifiers as well as the state-of-the-art deep learning architectures. Ablation analysis reveals that each component of PyNDA significantly contributes to its overall performance. Collectively, the results demonstrate the efficacy of the proposed architecture for facilitating rich psychometric analysis. Our results have important implications for user-centric information extraction and retrieval systems looking to measure and incorporate psychometric dimensions. 
    more » « less