Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We implemented a hybrid continuous solver for fluid electrons and kinetic ions. Because the simulation is continuous, numerical noise is not an issue as it is for particle‐in‐cell approaches. Moreover, given that the ion kinetic equation is solved using a characteristic based method, no particle pushes have to be done. Our main goals are to reduce the computational cost of the simulations proposed by Kovalev (Kovalev et al., 2008,https://doi.org/10.5194/angeo2628532008) and reproduce the main experimental features of Farley‐Buneman instabilities measured by radars and rockets. The equations were derived from first principles using the approximations that are satisfied in the auroral E‐region. Various tests will be presented to assess numerical accuracy. With the proposed numerical framework, we are able to recover important nonlinear features associated with Farley‐Buneman instabilities: wave turning of dominant modes, and saturation of density irregularities at values consistent with experiments.more » « less
-
Abstract Observations of backscatter from field‐aligned plasma density irregularities in sporadicE(Es) layers made with a 30‐MHz coherent scatter radar imager in Ithaca, New York are presented and analyzed. The volume probed by the radar lies at approximately 54° geomagnetic latitude, under the midlatitude trough and at the extreme northern edge of the zone whereEslayers are prevalent. Nonetheless, the irregularities exhibit many of the characteristics of quasiperiodic echoes observed commonly at lower middle latitudes. These include a tendency to occur in elongated bands stretching from the northwest to southeast in the Northern hemisphere separated by tens of kilometers and propagating to the southwest. In addition, the irregularities were found to exhibit finer‐scale structures with secondary bands oriented nearly normally to the primary bands. We investigate the proposition that the primary bands are telltale ofEs‐layer structuring caused by neutral Kelvin Helmholtz (KH) instability in the lower thermosphere and that the secondary bands signify secondary KH instability. Results from a 3D numerical simulation of KH support this proposition.more » « less
-
Abstract Ionospheric modification experiments have been performed at the High‐Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska, using a Very High Frequency (VHF) coherent scatter radar in Homer, Alaska, for experimental diagnostics. The experiments were intended to determine the threshold pump electric field required to initiate thermal parametric instability in theEregion. The pump power level was ramped systematically to determine the threshold, and the experiment was repeated at four closely spaced pump frequencies. This provided threshold estimates at fourEregion altitudes. The theory for thermal parametric instability based on the work of Dysthe et al. (1983,https://doi.org/10.1063/1.863993) has been modified for application in theEregion. The theory considers magneto‐ionic effects on the pump mode, linear mode conversion theory for upper hybrid wave generation, wave heating, and the effects of transport and dissipation based on fluid theory. The theory amounts to an eigenvalue problem where the eigenvalue is the threshold pump electric field for instability. The theory shows how the threshold depends on ionospheric transport coefficients and on the fractional cooling rate for inelastic electron‐neutral collisions. The theoretical predictions for threshold are roughly consistent with experimental values although the latter are probably affected by excess ionospheric absorption.more » « less
-
Abstract. It is generally accepted that modeling Farley–Buneman instabilities requires resolving ion Landau damping to reproduce experimentally observed features. Particle-in-cell (PIC) simulations have been able to reproduce most of these but at a computational cost that severely affects their scalability. This limitation hinders the study of non-local phenomena that require three dimensions or coupling with larger-scale processes. We argue that a form of the five-moment fluid system can recreate several qualitative aspects of Farley–Buneman dynamics such as density and phase speed saturation, wave turning, and heating. Unexpectedly, these features are still reproduced even without using artificial viscosity to capture Landau damping. Comparing the proposed fluid models and a PIC implementation shows good qualitative agreement.more » « less
An official website of the United States government
