skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1820882

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This topical review introduces the theoretical and experimental advances in continuous-variable (CV)—i.e. qumode-based in lieu of qubit-based—large-scale, fault-tolerant quantum computing and quantum simulation. An introduction to the physics and mathematics of multipartite entangled CV cluster states is given, and their connection to experimental concepts is delineated. Paths toward fault tolerance are also presented. It is the hope of the author that this review attract more contributors to the field and promote its extension to the promising technology of integrated quantum photonics. 
    more » « less
  2. We present an algorithm to reliably generate various quantum states critical to quantum error correction and universal continuous-variable (CV) quantum computing, such as Schrödinger cat states and Gottesman-Kitaev-Preskill (GKP) grid states, out of Gaussian CV cluster states. Our algorithm is based on the Photon-counting-Assisted Node-Teleportation Method (PhANTM), which uses standard Gaussian information processing on the cluster state with the only addition of local photon-number-resolving measurements. We show that PhANTM can apply polynomial gates and embed cat states within the cluster. This method stabilizes cat states against Gaussian noise and perpetuates non-Gaussianity within the cluster. We show that existing protocols for breeding cat states can be embedded into cluster state processing using PhANTM. 
    more » « less
  3. The prototype quantum random number (random bit) generator (QRNG) consists of one photon at a time falling on a 50:50 beam splitter followed by random detection in one or the other output beams due to the irreducible probabilistic nature of quantum mechanics. Due to the difficulties in producing single photons on demand, in practice, pulses of weak coherent (laser) light are used. In this paper, we take a different approach, one that uses moderate coherent light. It is shown that a QRNG can be implemented by performing photon-number parity measurements. For moderate coherent light, the probabilities of obtaining even or odd parity in photon counts are 0.5 each. Photon counting with single-photon resolution can be performed through use of a cascade of beam splitters and single-photon detectors, as was done recently in a photon-number parity-based interferometry experiment involving coherent light. We highlight the point that unlike most quantum-based random number generators, our proposal does not require the use of classical de-biasing algorithms or post-processing of the generated bit sequence. 
    more » « less
  4. We propose and fully analyze the simplest technique to date (to our knowledge) for generating light-based universal quantum computing resources, namely, 2D, 3D, and n -hypercubic cluster states in general. The technique uses two standard optical components: first, a single optical parametric oscillator pumped below threshold by a monochromatic field, which generates Einstein–Podolsky–Rosen entangled states, a.k.a. two-mode squeezed states, over the quantum optical frequency comb; second, phase modulation at frequencies that are multiples of the comb spacing (via RF or optical means). The compactness of this technique paves the way to implementing quantum computing on chip using quantum nanophotonics. 
    more » « less
  5. null (Ed.)