skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1821135

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mesoscale high‐latitude electric fields are known to deposit energy into the ionospheric and thermospheric system, yet the energy deposition process is not fully understood. We conduct a case study to quantify the energy deposition from mesoscale high‐latitude electric fields to the thermosphere. For the investigation, we obtain the high‐latitude electric field with mesoscale variabilities from Poker Flat Incoherent Scatter Radar measurements during a moderate geomagnetic storm, providing the driver for the Global Ionosphere and Thermosphere Model (GITM) via the High‐latitude Input for Mesoscale Electrodynamics framework. The HIME‐GITM simulation is compared with GITM simulations driven by the large‐scale electric field from the Weimer model. Our modeling results indicate that the mesoscale electric field modifies the thermospheric energy budget primarily through enhancing the Joule heating. Specifically, in the local high‐latitude region of interest, the mesoscale electric field enhances the Joule heating by up to five times. The resulting neutral temperature enhancement can reach up to 50 K above 200 km altitude. Significant increase in the neutral density above 250 km altitude and in the neutral wind speed are found in the local region as well, lagging a few minutes after the Joule heating enhancement. We demonstrate that the energy deposited by the mesoscale electric field transfers primarily to the gravitational potential energy in the thermosphere. 
    more » « less
  2. Abstract Small-scale dynamic auroras have spatial scales of a few km or less, and temporal scales of a few seconds or less, which visualize the complex interplay among charged particles, Alfvén waves, and plasma instabilities working in the magnetosphere-ionosphere coupled regions. We summarize the observed properties of flickering auroras, vortex motions, and filamentary structures. We also summarize the development of fundamental theories, such as dispersive Alfvén waves (DAWs), plasma instabilities in the auroral acceleration region, ionospheric feedback instabilities (IFI), and the ionospheric Alfvén resonator (IAR). 
    more » « less
  3. Strong thermal emission velocity enhancement (STEVE) is an optical phenomenon of the subauroral ionosphere arising from extreme ion drift speeds. STEVE consists of two distinct components in true‐color imagery: a mauve or whitish arc extended in the magnetic east–west direction and a region of green emission adjacent to the arc, often structured into quasiperiodic columns aligned with the geomagnetic field (the “picket fence”). This work employs high‐resolution imagery by citizen scientists in a critical examination of fine‐scale features within the green emission region. Of particular interest are narrow “streaks” of emission forming underneath field‐aligned picket fence elements in the 100‐ to 110‐km altitude range. The streaks propagate in curved trajectories with dominant direction toward STEVE from the poleward side. The elongation is along the direction of motion, suggesting a drifting point‐like excitation source, with the apparent elongation due to a combination of motion blur and radiative lifetime effects. The cross‐sectional dimension is <1 km, and the cases observed have a duration of∼20–30 s. The uniform coloration of all STEVE green features in these events suggests a common optical spectrum dominated by the oxygen 557.7‐nm emission line. The source is most likely direct excitation of ambient oxygen by superthermal electrons generated by ionospheric turbulence induced by the extreme electric fields driving STEVE. Some conjectures about causal connections with overlying field‐aligned structures are presented, based on coupling of thermal and gradient‐drift instabilities, with analogues to similar dynamics observed from chemical release and ionospheric heating experiments. 
    more » « less