skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1821679

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The goal of the greater project is to provide students with hands-on learning experiences while removing cost as a barrier to participation. Our Low-Cost Desktop Learning Modules (or LCDLMs) help students visualize and experience engineering concepts where books prove less than adequate and provide class members with the opportunity to learn as a group and collaborate with one another. LCDLMs have been found to improve motivation and attention while providing direct and vicarious learning opportunities, encouraging information retention in a learning environment. The goal of this paper is to introduce the latest LCDLM in development, for glucose analysis, which will mark the first LCDLM to feature a chemical reaction. In this paper we will also go over future work to be done to make the glucose analyzer viable for classroom use. The new module will feature a glucose solution meant for analysis, a set of reagents to convert the solution from transparent to a red-violet color of intensity correlated to the glucose concentration, and a simple apparatus students can use to read the concentration of the sample. The apparatus is meant to be used to teach students multiple engineering concepts through visual demonstration. In this LCDLM concept, chemicals from a set of reservoirs flow through a transparent microfluidics mixing chamber, which leads to a colorimetric reaction based on the amount of glucose present, teaching students about kinetics and, to a lesser extent, microfluidics. Dissolved oxygen is a limiting reagent, which will demonstrate to students the relevance of stoichiometry and mass transfer in a closed system. The mixture then collects in a chamber with two transparent sides. Green light passes through the red solution and into the lens of a smartphone camera to measure the intensity of the light. This is meant to demonstrate Beer’s law and complimentary colors. The more light that can pass through, the lower the glucose concentration. Students will need to measure a series of solutions with varied but known concentrations, construct a calibration curve, and then find an unknown solution concentration based on where an absorbance reading falls on the curve, modeling a routine wet lab test but without the need for expensive instrumentation. Prototyping is needed before a definitive version can be implemented in the classroom. The final design for the analyzer, how it will be assembled, parts to be used, etc., is being determined, and up-to-date results will be presented. The geometry of the mixing chamber with attached reservoirs for adding reagents must be optimized for small samples. The plan is to design a 3D model in SolidWorks and then cut out a prototype from an acrylic sheet with a laser cutter. The prototype will then be tested for leaks. The module itself will consist of the channel sheet glued between two other sheets, making assembly straightforward. 
    more » « less
    Free, publicly-accessible full text available June 23, 2025
  2. Free, publicly-accessible full text available June 1, 2025
  3. Free, publicly-accessible full text available June 1, 2025
  4. Free, publicly-accessible full text available June 1, 2025
  5. There is overwhelming research evidence showing that students often struggle with learning key engineering concepts. The Low-Cost Desktop Learning Modules (LCDLMs) are model prototypes of standard industry equipment designed for students to learn some fundamental but abstract engineering concepts in the classrooms. Previous results have shown that students who interact with LCDLMs tend to outperform those who engage in traditional lectures. However, little is known about student profiles and their forms of engagement with this tool. Hence, the present study seeks to investigate the different student profiles that emerge from students working with the LCDLM and the demographic factors that influence student engagement with the tool. Participants (N = 1,288) responded to an engagement survey after working with LCDLMs in engineering classrooms in several states around the United States. We then used a latent profile analysis (LPA) – an advanced statistical approach – to better understand the representation of learner engagement profiles resulting from their self-reported learning engagement beliefs as they reflect on their experience in using LCDLMs. The LPA revealed five distinct profile types – disengaged, somewhat engaged, moderately engaged, highly engaged, and fluctuating engagement. Results showed that those who are more interactive and actively engaged with the LCDLM scored higher on their questionnaire compared to those who passively engaged with the LCDLM. We conclude with a discussion of the theoretical and practical implications of our findings. 
    more » « less
  6. Over the past year we continued, under support from the NSF Division of Undergraduate Education, to emphasize implementation of Low-Cost Desktop Learning Modules LCDLMs for fluid mechanics, heat transfer and biomedical applications. Here we present implementation data from concept tests and surveys, details on new designs and insights gained. Through these activities our team progressed beyond original expectations that were outlined in our original set of NSF-sponsored objectives. We analyzed data from several institutions added from the south central and mid-eastern portions of the US through a combined University of ***-L** and -P** training hub conducted in a virtual mode held in September 2020 with regional communications spearheaded by respective faculty from these institutions. Much of the data analyzed results from support through a 2020 NSF supplement where we engaged in a study to compare direct hands-on implementations of LCDLMs to virtual synchronous and asynchronous implementations augmented with short conceptual videos, a tact necessary because of COVID-19 in-person restrictions. Surprisingly, both in-person and virtual modes show similar conceptual gains. A publication is being developed with intent for submission to the International Journal of Engineering Education where we compare the virtual and in-person modes of instruction. We added a few more institutions through a northeastern training hub held in August 2021 with faculty from the University of *** managing regional communications; again, this hub was held virtually given uncertainty about the lifting of COVID-19 related restrictions. Regarding new LCDLMs we added a shell and tube heat exchanger and fabricated a large number for distribution and implementation and began analyzing conceptual gains and survey results. We prototyped a new evaporative cooler and continue to develop new broader impact units to demonstrate stenosis in an artery and blood cell separations and began implementing them in the classroom. Regarding LCDLM publications a paper was published in Chemical Engineering Education on a study where we compare heat transfer data for the miniature double pipe heat exchanger to predictions based on correlations for industrial scale heat exchangers and included classroom assessment data. 
    more » « less
  7. Our team has developed Low-Cost Desktop Learning Modules (LCDLMS) as tools to study transport phenomena aimed at providing hands-on learning experiences. With an implementation design embedded in the community of inquiry framework, we disseminate units to professors across the country and train them on how to facilitate teacher presence in the classroom with the LC-DLMs. Professors are briefed on how create a homogenous learning environment for students based on best-practices using the LC-DLMs. By collecting student cognitive gain data using pre/posttests before and after students encounter the LC-DLMs, we aim to isolate the variable of the professor on the implementation with LC-DLMs. Because of the onset of COVID-19, we have modalities for both hands-on and virtual implementation data. An ANOVA whereby modality was grouped and professor effect was the independent variable had significance on the score difference in pre/posttest scores (p<0.0001) and on posttest score only (p=0.0004). When we divide out modality between hands-on and virtual, an ANOVA with an Ftest using modality as the independent variable and professor effect as the nesting variable also show significance on the score difference between pre and posttests (p-value=0.0236 for handson, and p-value=0.0004 for virtual) and on the posttest score only (p-value=0.0314 for hands-on, and p-value<0.0001 for virtual). These results indicate that in all modalities professor had an effect on student cognitive gains with respect to differences in pre/posttest score and posttest score only. Future will focus on qualitative analysis of features of classrooms yield high cognitive gains in undergraduate engineering students. 
    more » « less
  8. Although there is extensive literature documenting hands-on learning experiences in engineering classrooms, there is a lack of consensus regarding how student learning during these activities compares to learning during online video demonstrations. Further, little work has been done to directly compare student learning for similarly-designed hands-on learning experiences focused on different engineering subjects. As the use of hands-on activities in engineering continues to grow, understanding how to optimize student learning during these activities is critical. To address this, we collected conceptual assessment data from 763 students at 15 four-year institutions. Students completed activities with one of two highly visual low-cost desktop learning modules (LCDLMs), one focused on fluid mechanics and the other on heat transfer principles, using two different implementation formats: either hands-on or video demonstration. Conceptual assessment results showed that assessment scores significantly increased after all LCDLM activities and that gains were statistically similar for hands-on and video demonstrations, suggesting both implementation formats support an impactful student learning experience. However, a significant difference was observed in effectiveness based on the type of LCDLM used. Score increases of 31.2% and 24% were recorded on our post-activity assessment for hands-on and virtual implementations of the fluid mechanics LCDLM compared to pre-activity assessment scores, respectively, while significantly smaller 8.2% and 9.2% increases were observed for hands-on and virtual implementations of the heat transfer LCDLM. In this paper, we consider existing literature to ascertain the reasons for similar effectiveness of hands-on and video demonstrations and for the differing effectiveness of the fluid mechanics and heat transfer LCDLMs. We discuss the practical implications of our findings with respect to designing hands-on or video demonstration activities. 
    more » « less
  9. Hands-on experiments using the Low-Cost Desktop Learning Modules (LCDLMs) have been implemented in dozens of classrooms to supplement student learning of heat transfer and fluid mechanics concepts with students of varying prior knowledge. The prior knowledge of students who encounter these LCDLMs in the classroom may impact the degree to which students learn from these interactive pedagogies. This paper reports on the differences in student cognitive learning between groups with low and high prior knowledge of the concepts that are tested. Student conceptual test results for venturi, hydraulic loss, and double pipe heat exchanger LCDLMs are analyzed by grouping the student data into two bins based on pre-test score, one for students scoring below 50% and another for those scoring above and comparing the improvement from pretest to posttest between the two groups. The analysis includes data from all implementations of each LCDLM for the 2020-2021 school year. Results from each of the three LCDLMs were analyzed separately to compare student performance on different fluid mechanics or heat exchanger concepts. Then, the overall pre- and posttest scores for all three LCDLMs were analyzed to examine how this interactive pedagogy impacts cognitive gains. Results showed statistically significant differences in improvement between low prior knowledge groups and high prior knowledge groups. Additional findings showed statistically significant results suggesting that the gaps in performance between low prior knowledge and high prior knowledge groups on pre-tests for the LCDLMs were decreased on the posttest. Findings showed that students with lower prior knowledge show a greater overall improvement in cognitive gains than those with higher prior knowledge on all three low-cost desktop learning modules. 
    more » « less
  10. null (Ed.)
    The 2020 coronavirus pandemic necessitated the transition of courses across the United States from in-person to a virtual format. Effective delivery of traditional, lecture-based courses in an online setting can be difficult and determining how to best implement hands-on pedagogies in a virtual format is even more challenging. Interactive pedagogies such as hands-on learning tools, however, have proven to significantly enhance student conceptual understanding and motivation; therefore, it is worthwhile to adapt these activities for virtual instruction. Our team previously developed a number of hands-on learning tools called Low-Cost Desktop Learning Modules (LCDLMs) that demonstrate fluid mechanics and heat transfer concepts—traditionally utilized by student groups in a classroom setting, where they perform qualitative and quantitative experiments and interactively discuss conceptual items. In this paper we examined the transition of the LCDLM hands-on pedagogy to an entirely virtual format, focusing on a subset of results with greater detail to be shown at the ASEE conference as we analyze additional data. To aid the virtual implementations, we created a number of engaging videos under two major categories: (1) demonstrations of each LCDLM showing live data collection activities and (2) short, animated, narrated videos focused on specific concepts related to learning objectives. In this paper we present preliminary results from pre- and post- implementation conceptual assessments for the hydraulic loss module and motivational surveys completed for virtual implementations of LCDLMs and compare them with a subset of results collected during hands-on implementations in previous years. Significant differences in conceptual understanding or motivation between hands-on and virtual implementations are discussed. This paper provides useful, data-driven guidance for those seeking to switch hands-on pedagogies to a virtual format 
    more » « less