skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1822094

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Free, publicly-accessible full text available August 14, 2025
  3. Cybersecurity operations centers (CSOCs) protect organizations by monitoring network traffic and detecting suspicious activities in the form of alerts. The security response team within CSOCs is responsible for investigating and mitigating alerts. However, an imbalance between alert volume and available analysts creates a backlog, putting the network at risk of exploitation. Recent research has focused on improving the alert-management process by triaging alerts, optimizing analyst scheduling, and reducing analyst workload through systematic discarding of alerts. However, these works overlook the delays caused in alert investigations by several factors, including: (i) false or benign alerts contributing to the backlog; (ii) analysts experiencing cognitive burden from repeatedly reviewing unrelated alerts; and (iii) analysts being assigned to alerts that do not match well with their expertise. We propose a novel framework that considers these factors and utilizes machine learning and mathematical optimization methods to dynamically improve throughput during work shifts. The framework achieves efficiency by automating the identification and removal of a portion of benign alerts, forming clusters of similar alerts, and assigning analysts to alerts with matching attributes. Experiments conducted using real-world CSOC data demonstrate a 60.16% reduction in the alert backlog for an 8-h work shift compared to currently employed approach. 
    more » « less
    Free, publicly-accessible full text available June 30, 2025
  4. The coronavirus pandemic has fostered an explosion of misinformation about the disease, including the risk and effectiveness of vaccination. AI tools for automatic Scientific Claim Verification (SCV) can be crucial to defeat misinformation campaigns spreading through social media channels. However, over the past years, many concerns have been raised about the robustness of AI to adversarial attacks, and the field of automatic scientific claim verification is not exempt. The risk is that such SCV tools may reinforce and legitimize the spread of fake scientific claims rather than refute them. This paper investigates the problem of generating adversarial attacks for SCV tools and shows that it is far more difficult than the generic NLP adversarial attack problem. The current NLP adversarial attack generators, when applied to SCV, often generate modified claims with entirely different meaning from the original. Even when the meaning is preserved, the modification of the generated claim is too simplistic (only a single word is changed), leaving many weaknesses of the SCV tools undiscovered. We propose T5-ParEvo, an iterative evolutionary attack generator, that is able to generate more complex and creative attacks while better preserving the semantics of the original claim. Using detailed quantitative and qualitative analysis, we demonstrate the efficacy of T5-ParEvo in comparison with existing attack generators. 
    more » « less
    Free, publicly-accessible full text available May 2, 2025
  5. As the number and severity of security incidents continue to increase, remediating vulnerabilities and weaknesses has become a daunting task due to the sheer number of known vulnerabilities. Different scoring systems have been developed to provide qualitative and quantitative assessments of the severity of common vulnerabilities and weaknesses, and guide the prioritization of vulnerability remediation. However, these scoring systems provide only generic rankings of common weaknesses, which do not consider the specific vulnerabilities that exist in each system. To address this limitation, and building on recent principled approaches to vulnerability scoring, we propose new common weakness scoring metrics that consider the findings of vulnerability scanners, including the number of instances of each vulnerability across a system, and enable system-specific rankings that can provide actionable intelligence to security administrators. We built a small testbed to evaluate the proposed metrics against an existing metric, and show that the results are consistent with our intuition. 
    more » « less