Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Seismic and mineralogical studies have suggested regions at Earth’s core-mantle boundary may be highly enriched in FeO, reported to exhibit metallic behavior at extreme pressure-temperature (P–T) conditions. However, underlying electronic processes in FeO remain poorly understood. Here we explore the electronic structure ofB1-FeO at extreme conditions with large-scale theoretical modeling using state-of-the-art embedded dynamical mean field theory (eDMFT). Fine sampling of the phase diagram reveals that, instead of sharp metallization, compression of FeO at high temperatures induces a gradual orbitally selective insulator-metal transition. Specifically, atP–Tconditions of the lower mantle, FeO exists in an intermediate quantum critical state, characteristic of strongly correlated electronic matter. Transport in this regime, distinct from insulating or metallic behavior, is marked by incoherent diffusion of electrons in the conductingt2gorbital and a band gap in theegorbital, resulting in moderate electrical conductivity (~105S/m) with modestP–Tdependence as observed in experiments. Enrichment of solid FeO can thus provide a unifying explanation for independent observations of low seismic velocities and elevated electrical conductivities in heterogeneities at Earth’s mantle base.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Moiré bilayer materials have recently attracted much attention following the discovery of various correlated insulating states at specific band fillings. Here we discuss the metal-insulator transitions (MITs) that have been observed in the same devices, but at fillings far from the strongly correlated regime dominated by Mott-like physics, displaying many similarities to other examples of disorder-dominated MITs. We propose a minimal theoretical model describing the interplay of interactions and disorder, which is able to capture all the universal aspects of quantum criticality, as observed in experiments performed on several devices.more » « less
-
Abstract The increase in the resistivity with decreasing temperature followed by a drop by more than one order of magnitude is observed on the metallic side near the zero-magnetic-field metal-insulator transition in a strongly interacting two-dimensional electron system in ultra-clean SiGe/Si/SiGe quantum wells. We find that the temperature $$T_{\text {max}}$$ T max , at which the resistivity exhibits a maximum, is close to the renormalized Fermi temperature. However, rather than increasing along with the Fermi temperature, the value $$T_{\text {max}}$$ T max decreases appreciably for spinless electrons in spin-polarizing (parallel) magnetic fields. The observed behaviour of $$T_{\text {max}}$$ T max cannot be described by existing theories. The results indicate the spin-related origin of the effect.more » « less
-
In this paper we critically discuss several examples of two-dimensional electronic systems displaying interaction-driven metal-insulator transitions of the Mott (or Wigner–Mott) type, including dilute two-dimension electron gases (2DEG) in semiconductors, Mott organic materials, as well as the recently discovered transition-metal dichalcogenide (TMD) moiré bilayers. Remarkably similar behavior is found in all these systems, which is starting to paint a robust picture of Mott criticality. Most notable, on the metallic side a resistivity maximum is observed whose temperature scale vanishes at the transition. We compare the available experimental data on these systems to three existing theoretical scenarios: spinon theory, Dynamical Mean Field Theory (DMFT) and percolation theory. We show that the DMFT and percolation pictures for Mott criticality can be distinguished by studying the origins of the resistivity maxima using an analysis of the dielectric response.more » « less
-
null (Ed.)Abstract Coulomb repulsion among conduction electrons in solids hinders their motion and leads to a rise in resistivity. A regime of electronic phase separation is expected at the first-order phase transition between a correlated metal and a paramagnetic Mott insulator, but remains unexplored experimentally as well as theoretically nearby T = 0. We approach this issue by assessing the complex permittivity via dielectric spectroscopy, which provides vivid mapping of the Mott transition and deep insight into its microscopic nature. Our experiments utilizing both physical pressure and chemical substitution consistently reveal a strong enhancement of the quasi-static dielectric constant ε 1 when correlations are tuned through the critical value. All experimental trends are captured by dynamical mean-field theory of the single-band Hubbard model supplemented by percolation theory. Our findings suggest a similar ’dielectric catastrophe’ in many other correlated materials and explain previous observations that were assigned to multiferroicity or ferroelectricity.more » « less
An official website of the United States government
