Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We study the problem of fair allocation for indivisible goods. We use the maximin share paradigm introduced by Budish [Budish E (2011) The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. J. Political Econom. 119(6):1061–1103.] as a measure of fairness. Kurokawa et al. [Kurokawa D, Procaccia AD, Wang J (2018) Fair enough: Guaranteeing approximate maximin shares. J. ACM 65(2):8.] were the first to investigate this fundamental problem in the additive setting. They showed that in delicately constructed examples, not everyone can obtain a utility of at least her maximin value. They mitigated this impossibility result with a beautiful observation: no matter how the utility functions are made, we always can allocate the items to the agents to guarantee each agent’s utility is at least 2/3 of her maximin value. They left open whether this bound can be improved. Our main contribution answers this question in the affirmative. We improve their approximation result to a 3/4 factor guarantee.more » « less
-
null (Ed.)The edit distance between two strings is defined as the smallest number of insertions , deletions , and substitutions that need to be made to transform one of the strings to another one. Approximating edit distance in subquadratic time is “one of the biggest unsolved problems in the field of combinatorial pattern matching” [37]. Our main result is a quantum constant approximation algorithm for computing the edit distance in truly subquadratic time. More precisely, we give an quantum algorithm that approximates the edit distance within a factor of 3. We further extend this result to an quantum algorithm that approximates the edit distance within a larger constant factor. Our solutions are based on a framework for approximating edit distance in parallel settings. This framework requires as black box an algorithm that computes the distances of several smaller strings all at once. For a quantum algorithm, we reduce the black box to metric estimation and provide efficient algorithms for approximating it. We further show that this framework enables us to approximate edit distance in distributed settings. To this end, we provide a MapReduce algorithm to approximate edit distance within a factor of , with sublinearly many machines and sublinear memory. Also, our algorithm runs in a logarithmic number of rounds.more » « less
An official website of the United States government

Full Text Available