Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Speech emotion recognition (SER) plays an important role in multiple fields such as healthcare, human-computer interaction (HCI), and security and defense. Emotional labels are often annotated at the sentence-level (i.e., one label per sentence), resulting in a sequence-to-one recognition problem. Traditionally, studies have relied on statistical descriptions, which are com- puted over time from low level descriptors (LLDs), creating a fixed dimension sentence-level feature representation regardless of the duration of the sentence. However sentence-level features lack temporal information, which limits the performance of SER systems. Recently, new deep learning architectures have been proposed to model temporal data. An important question is how to extract emotion-relevant features with temporal infor- mation. This study proposes a novel data processing approach that extracts a fixed number of small chunks over sentences of different durations by changing the overlap between these chunks. The approach is flexible, providing an ideal frame- work to combine gated network or attention mechanisms with long short-term memory (LSTM) networks. Our experimental results based on the MSP-Podcast dataset demonstrate that the proposed method not only significantly improves recognition accuracy over alternative temporal-based models relying on LSTM, but also leads to computational efficiency.more » « less
-
null (Ed.)Human-computer interactions can be very effective, especially if computers can automatically recognize the emotional state of the user. A key barrier for effective speech emotion recognition systems is the lack of large corpora annotated with emotional labels that reflect the temporal complexity of expressive behaviors, especially during multiparty interactions. This pa- per introduces the MSP-Conversation corpus, which contains interactions annotated with time-continuous emotional traces for arousal (calm to active), valence (negative to positive), and dominance (weak to strong). Time-continuous annotations offer the flexibility to explore emotional displays at different temporal resolutions while leveraging contextual information. This is an ongoing effort, where the corpus currently contains more than 15 hours of speech annotated by at least five annotators. The data is sourced from the MSP-Podcast corpus, which contains speech data from online audio-sharing websites annotated with sentence-level emotional scores. This data collection scheme is an easy, affordable, and scalable approach to obtain natural data with diverse emotional content from multiple speakers. This study describes the key features of the corpus. It also compares the time-continuous evaluations from the MSP- Conversation corpus with the sentence-level annotations of the MSP-Podcast corpus for the speech segments that overlap between the two corpora.more » « less
-
A challenging task in affective computing is to build reliable speech emotion recognition (SER) systems that can accurately predict emotional attributes from spontaneous speech. To increase the trust in these SER systems, it is important to predict not only their accuracy, but also their confidence. An intriguing approach to predict uncertainty is Monte Carlo (MC) dropout, which obtains pre- dictions from multiple feed-forward passes through a deep neural network (DNN) by using dropout regularization in both training and inference. This study evaluates this approach with regression models to predict emotional attribute scores for valence, arousal and dom- inance. The analysis illustrates that predicting uncertainty in this problem is possible, where the performance is higher for samples in the test set with lower uncertainty. The study evaluates uncertainty estimation as a function of the emotional attributes, showing that samples with extreme values have lower uncertainty. Finally, we demonstrate the benefits of uncertainty estimation with reject option, where a classifier can decline to give a prediction when its confi- dence is low. By rejecting only 25% of the test set with the highest uncertainty, we achieve relative performance gains of 7.34% for arousal, 13.73% for valence and 8.79% for dominance.more » « less