skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1823230

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Localization in urban environments is becoming increasingly important and used in tools such as ARCore [ 18 ], ARKit [ 34 ] and others. One popular mechanism to achieve accurate indoor localization and a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Furthermore, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading tasks without the large latencies seen when offloading to the cloud. In this article, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 [ 50 ] as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closing, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant, which would allow for the deployment of other end applications that use Visual-SLAM. We perform a detailed performance and resources use (CPU, memory, network, and power) analysis to fully understand the effect of our proposed split architecture. 
    more » « less
  2. UAVs are deployed in various applications including disaster search-and-rescue, precision agriculture, law enforcement and first response. As UAV software systems grow more complex, the drawbacks of developing them in low-level languages become more pronounced. For example, the lack of memory safety in C implies poor isolation between the UAV autopilot and other concurrent tasks. As a result, the most crucial aspect of UAV reliability-timely control of the flight-could be adversely impacted by other tasks such as perception or planning. We introduce JCopter, an autopilot framework for UAVs developed in a managed language, i.e., a high-level language with built-in safe memory and timing management. Through detailed simulation as well as flight testing, we demonstrate how JCopter retains the timeliness of C-based autopilots while also providing the reliability of managed languages. 
    more » « less
  3. null (Ed.)