skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1824228

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Network quality-of-service (QoS) does not always translate to user quality-of-experience (QoE). Consequently, knowledge of user QoE is desirable in several scenarios that have traditionally operated on QoS information. Examples include traffic management by ISPs and resource allocation by the operating system. But today these systems lack ways to measure user QoE. To help address this problem, we propose offline generation of per-app models mapping app-independent QoS metrics to app-specific QoE metrics. This enables any entity that can observe an app's network traffic-including ISPs and access points-to infer the app's QoE. We describe how to generate such models for many diverse apps with significantly different QoE metrics. We generate models for common user interactions of 60 popular apps. We then demonstrate the utility of these models by implementing a QoE-aware traffic management framework and evaluate it on a WiFi access point. Our approach successfully improves QoE metrics that reflect user-perceived performance. First, we demonstrate that prioritizing traffic for latency-sensitive apps can improve responsiveness and video frame rate, by 46% and 115%, respectively. Second, we show that a novel QoE-aware bandwidth allocation scheme for bandwidth-intensive apps can improve average video bitrate for multiple users by up to 23%. 
    more » « less