skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1825356

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Colloidal semiconductor nanocrystals with tunable optical and electronic properties are opening up exciting opportunities for high-performance optoelectronics, photovoltaics, and bioimaging applications. Identifying the optimal synthesis conditions and screening of synthesis recipes in search of efficient synthesis pathways to obtain nanocrystals with desired optoelectronic properties, however, remains one of the major bottlenecks for accelerated discovery of colloidal nanocrystals. Conventional strategies, often guided by limited understanding of the underlying mechanisms remain expensive in both time and resources, thus significantly impeding the overall discovery process. In response, an autonomous experimentation platform is presented as a viable approach for accelerated synthesis screening and optimization of colloidal nanocrystals. Using a machine-learning-based predictive synthesis approach, integrated with automated flow reactor and inline spectroscopy, indium phosphide nanocrystals are autonomously synthesized. Their polydispersity for different target absorption wavelengths across the visible spectrum is simultaneously optimized during the autonomous experimentation, while utilizing minimal self-driven experiments (less than 50 experiments within 2 days). Starting with no-prior-knowledge of the synthesis, an ensemble neural network is trained through autonomous experiments to accurately predict the reaction outcome across the entire synthesis parameter space. The predicted parameter space map also provides new nucleation-growth kinetic insights to achieve high monodispersity in size of colloidal nanocrystals. 
    more » « less
  2. Cu 2− x S nanocrystals can serve as templates and intermediates in the synthesis of a wide range of nanocrystals through seeded growth, cation exchange, and/or catalytic growth. This versatility can facilitate and accelerate the search for environmentally benign nanocrystals of high performance with variable shapes, sizes, and composition. However, expanding the compositional space via Cu 2− x S nanocrystals while achieving necessary uniformity requires an improved understanding of the growth mechanisms. Herein we address several unusual and previously unexplained aspects of the growth of CuGaS 2 nanorods from Cu 2− x S seeds as an example. In particular, we address the origin of the diverse morphologies which manifest from a relatively homogeneous starting mixture. We find that CuGaS 2 nanorods start as Cu 2− x S/CuGaS 2 Janus particles, the majority of which have a {101̄2}/{101̄2} interface that helps to minimize lattice strain. We propose a mechanism that involves concurrent seed growth and cation exchange (CSC), where epitaxial growth of the Cu 2− x S seed, rather than the anticipated catalytic or seeded growth of CuGaS 2 , occurs along with cation exchange that converts growing Cu 2− x S to CuGaS 2 . This mechanism can explain the incorporation of the large number of anions needed to account for the order-of-magnitude volume increase upon CuGaS 2 rod growth (which cannot be accounted for by the commonly assumed catalytic growth mechanism) and variations in morphology, including the pervasive tapering and growth direction change. Insights from the CSC growth mechanism also help to explain a previously puzzling phenomenon of regioselective nucleation of CuInSe 2 on kinked CuGaS 2 nanorods. 
    more » « less