- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Hicken, Jason E. (4)
-
Kaur, Sharanjeet (2)
-
Yan, Jianfeng (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a smooth, differentiable formula that can be used to approximate an existing geometry as a level-set function. The formula uses data from a finite number of points on the surface and does not require solving a linear or nonlinear system, i.e., the formula is explicit. The baseline method is a smooth analog of a piecewise linear approximation to the surface, but a quadratic correction can be constructed using curvature information. Numerical experiments explore the accuracy of the level-set formula and the influence of its free parameters. For smooth geometries, the results show that the linear and quadratic versions of the method are second- and third-order accurate, respectively. For non-smooth geometries, the infinity norm of the error converges at a first-order rate.more » « less
-
Kaur, Sharanjeet; Hicken, Jason E. (, AIAA SciTech Forum)null (Ed.)We present a high-order discontinuous Galerkin difference (DGD) discretization for cut-cell meshes. We leverage the DGD reconstruction procedure to ameliorate the small-cell problem associated with cut-cells. Numerical experiments demonstrate that the conditioning of DGD discretizations is insensitive to cut-cell sizes for linear problems in one- and two-dimensions. In addition, results are presented that verify the accuracy of the DGD discretization applied to the Euler equations.more » « less
-
Yan, Jianfeng; Hicken, Jason E. (, International Journal for Numerical Methods in Fluids)
-
Yan, Jianfeng; Hicken, Jason E. (, 2018 AIAA Fluid Dynamics Conference)
An official website of the United States government
