skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1826666

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Seasonal diet shifts and migration are key components of large herbivore population dynamics, but we lack a systematic understanding of how these behaviours are distributed on a macroecological scale.

    The prevalence of seasonal strategies is likely related to herbivore body size and feeding guild, and may also be influenced by properties of the environment, such as soil nutrient availability and climate seasonality.

    We evaluated the distribution of seasonal dietary shifts and migration across large‐bodied mammalian herbivores and determined how these behaviours related to diet, body size and environment.

    We found that herbivore strategies were consistently correlated with their traits: seasonal diet shifts were most prevalent among mixed feeding herbivores and migration among grazers and larger herbivores. Seasonality also played a role, particularly for migration, which was more common at higher latitudes. Both dietary shifts and migration were more widespread among extratropical herbivores, which also exhibited more intermediate diets and body sizes.

    Our findings suggest that strong seasonality in extratropical systems imposes pressure on herbivores, necessitating widespread behavioural responses to navigate seasonal resource bottlenecks. It follows that tropical and extratropical herbivores may have divergent responses to global change, with intensifying herbivore pressure in extratropical systems contrasting with diminishing herbivore pressure in tropical systems.

     
    more » « less
  2. Abstract

    Herbivory is a key process structuring vegetation in savannas, especially in Africa where large mammal herbivore communities remain intact. Exclusion experiments consistently show that herbivores impact savanna vegetation, but effect size variation has resisted explanation, limiting our understanding of the past, present and future roles of herbivory in savanna ecosystems.

    Synthesis of vegetation responses to herbivore exclusion shows that herbivory decreased grass abundance by 57.0% and tree abundance by 30.6% across African savannas.

    The magnitude of herbivore exclusion effects scaled with herbivore abundance: more grazing herbivores resulted in larger grass responses and more browsing herbivores in larger tree responses. However, existing experiments are concentrated in semi‐arid savannas (400–800‐mm rainfall) and soils data are mostly lacking, which makes disentangling environmental constraints a challenge and priority for future research.

    Observed herbivore impacts were ~2.1× larger than existing estimates modelled based on consumption. Wildlife metabolic rates may be higher than are usually used for estimating consumption, which offers one clear avenue for reconciling estimated herbivore consumption with observed herbivore impacts. Plant‐soil feedbacks, plant community composition, and the phenological or demographic timing of herbivory may also influence vegetation productivity, thereby magnifying herbivore impacts.

    Because herbivore abundance so closely predicts vegetation impact, changes in herbivore abundance through time are likely predictive of the past and future of their impacts. Grazer diversity in Africa has declined from its peak 1 million years ago and wild grazer abundance has declined historically, suggesting that grazing likely had larger impacts in the past than it does today.

    Current wildlife impacts are dominated by small‐bodied mixed feeders, which will likely continue into the future, but the magnitude of top‐down control may also depend on changing climate, fire and atmospheric CO2.

    Synthesis. Herbivore biomass determines the magnitude of their impacts on savanna vegetation, with effect sizes based on direct observation that outstrip existing modelled estimates across African savannas. Findings suggest substantial ecosystem impacts of herbivory and allow us to generate evidence‐based hypotheses of the past and future impacts of herbivores on savanna vegetation.

     
    more » « less
  3. ABSTRACT

    The Pleistocene ungulate communities from the western coastal plains of South Africa's Cape Floristic Region (CFR) are diverse and dominated by grazers, in contrast to the region's Holocene and historical faunas, which are relatively species‐poor and dominated by small‐bodied browsers and mixed feeders. An expansion of grassy habitats is clearly implied by the Pleistocene faunas, but the presence of ruminant grazers that cannot survive the summer dry season typical of the region today suggests other important paleoecological changes. Here we use dental ecometrics to explore the paleoecological implications of the region's Pleistocene faunas. We show that the dental traits (hypsodonty and occlusal topography) of the ungulates that occurred historically in the CFR track annual and summer aridity, and we use these relationships to reconstruct past aridity. Our results indicate that the Pleistocene faunas signal paleoenvironments that were on average less arid than today, including during the summer, consistent with other lines of evidence that suggest a higher water table and expansion of well‐watered habitats. Greater water availability can be explained by lower temperature and reduced evapotranspiration during cooler phases of the Pleistocene, probably coupled with enhanced groundwater recharge due to increased winter precipitation.

     
    more » « less
  4. Abstract

    Despite advances in our understanding of the geographic and temporal scope of the Paleolithic record, we know remarkably little about the evolutionary and ecological consequences of changes in human behavior. Recent inquiries suggest that human evolution reflects a long history of interconnections between the behavior of humans and their surrounding ecosystems (e.g., niche construction). Developing expectations to identify such phenomena is remarkably difficult because it requires understanding the multi‐generational impacts of changes in behavior. These long‐term dynamics require insights into the emergent phenomena that alter selective pressures over longer time periods which are not possible to observe, and are also not intuitive based on observations derived from ethnographic time scales. Generative models show promise for probing these potentially unexpected consequences of human‐environment interaction. Changes in the uses of landscapes may have long term implications for the environments that hominins occupied. We explore other potential proxies of behavior and examine how modeling may provide expectations for a variety of phenomena.

     
    more » « less
  5. Abstract. The Greater Cape Floristic Region (GCFR) ofSouth Africa is a biodiversity hotspot of global significance, and itsarcheological record has substantially contributed to the understanding ofmodern human origins. For both reasons, the climate and vegetation historyof southwestern South Africa is of interest to numerous fields. Currentlyknown paleoenvironmental records cover the Holocene, the lastglacial–interglacial transition and parts of the last glaciation but do notencompass a full glacial–interglacial cycle. To obtain a continuousvegetation record of the last Pleistocene glacial–interglacial cycles, westudied pollen, spores and micro-charcoal of deep-sea sediments from IODPSite U1479 retrieved from SW of Cape Town. We compare our palynologicalresults of the Pleistocene with previously published results of Pliocenematerial from the same site. We find that the vegetation of the GCFR, inparticular fynbos and afrotemperate forest, responds to precessional forcingof climate. The micro-charcoal record confirms the importance of fires inthe fynbos vegetation. Ericaceae-rich and Asteraceae-rich types of fynboscould extend on the western part of the Paleo-Agulhas Plain (PAP), whichemerged during periods of low sea level of the Pleistocene. 
    more » « less
  6. Fire activity varies substantially at global scales because of the influence of climate, but at broad spatiotemporal scales, the possible effects of herbivory on fire activity are unknown. Here, we used late Quaternary large-bodied herbivore extinctions as a global exclusion experiment to examine the responses of grassy ecosystem paleofire activity (through charcoal proxies) to continental differences in extinction severity. Grassy ecosystem fire activity increased in response to herbivore extinction, with larger increases on continents that suffered the largest losses of grazers; browser declines had no such effect. These shifts suggest that herbivory can have Earth system–scale effects on fire and that herbivore impacts should be explicitly considered when predicting changes in past and future global fire activity. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)